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ABSTRACT 

Using model-theoretic methods we prove: 

THEOREM A: I f  G is a Nash group over the real or p-adic field, then there  

is a Nash isomorphism between neighbourhoods of  the  identity of G and 

of the set  o f  F-rational points of  an algebraic group defined over F. 

THEOREM B: Let G be a connected affine Nash  group over R. Then G 

is Nash isogeneous with t he  (real) connected component of  the  set  of  reM 

points of an algebraic group  defined over R. 

THEOREM C: Let G be a group definable in a pseudo-finite field F. Then 

G is definably virtually isogeneous with the set of  F-rationM points of  an 

algebraic group defined over F .  

* B o t h  a u t h o r s  s u p p o r t e d  by  N S F  g r a n t s .  
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Introduct ion  

In this paper we are concerned with groups which are first order definable in the 

real and p-adics, or in pseudo-finite fields [Fr-J]. Generally, when we say that  a 

group G is de f inab l e  in a s t r u c t u r e  M, we mean that  the universe of G is a 

first order definable subset of M n for some n, and that  the graph of the group 

operation of G is a definable subset of M 3n. When we speak of de f inab i l i t y  in 

a field F we mean definability in the structure (F, § .). 

If F is any field, the group G(F) of F-rat ional  points of an (abstract) algebraic 

group G defined over F is an example of a group definable in F. Conversely, we 

show here that  for suitable fields F,  any group H definable in F is closely related 

(in a definable fashion) to some group G(F) where G is an algebraic group defined 

over F. 

In fact we start  off by showing, that  under very general hypotheses on F we 

have a "generic" definable isomomorphism between H and G(F) for suitable G. 

Additional arguments in the three cases considered here (Theorems A, B and 

C) yield sharper results: a definable isomorphism between neighbourhoods of 

the identity in the real and p-adic case, a definable isogeny between H and the 

connected component of G(]R) when H is a connected aff lne real Nash group, 

and a definable virtual isogeny between H and G(F) when F is a pseudo-finite 

field. 

The version of these results in the case where F is an a l g e b r a i c a l l y  c losed  

field, namely that  a group definable in F is definably (in F)  isomorphic to an 

algebraic group, is well-known to model theorists. This is essentially a conse- 

quence of Weil's theorem [W], stating that  an algebraic group can be recovered 

from birational data. Proofs of this were given by van den Dries and Hrushovski 

(cf [B1]). One can view the present paper as a further extension of Weil's theo- 

rem. In fact we will introduce a general class of (pairs) of structures, which we 

call geometric substructures of strongly minimal sets, and which will provide a 

general setting for the results of this paper. 

We turn now to a more detailed discussion of the main results. Some of the 

foundational material  on Nash manifolds and pseudo-finite fields will be reviewed 

in sections 4 and 2, respectively. 

THEOREM A: Let F be ]~ or Qp. Let G be a Nash group over F. Then there is 

an algebraic group H de~ned over F, and a Nash isomorphism between neigh- 

bourhoods of the identity of G and H ( F ) .  
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It is known [P2,P3] that  any group G definable in F = ~ or Qp be definably 

equipped with the structure of a real or p-adic Lie group; we refer to groups with a 

definable Lie structure as real or p-adic Nash groups. (A Nash function is simply 

a definable analytic function from an open definable subset of F n (F  -- ~ or Qp) 

into F. Nash manifolds and groups arise just like Lie groups but in a category 

whose morphism are Nash maps.) So Theorem A is really about groups definable 

in R or Qp. Once G is equipped with the structure of a Nash group, it becomes in 

particular a topological group, and hence the statement of the Theorem makes 

sense. The content of Theorem A is that  even though multiplication on G is 

given by a Nash function, G is, locally, definably isomorphic to a group in which 

multiplication is given by a rational function. J im Madden has informed us 

that  Theorem A is related to (and possibly follows from) work by Perrin [Pe] on 

henselian groups. We should also mention that  Madden and Stanton [M-S] have 

classified all 1-dimensional Nash groups. 

Theorem A is, even in the real case, the best possible general result. Namely 

it is not always possible to lift the local Nash isomorphism to a global Nash 

isomorphism between G and H ( F )  (or even to a Nash "virtual isogeny" between 

G and H(F ) ) .  An example is where G is [0, 1) with the group operation taken as 

addition mod 1. G is equipped with Nash group structure by identifying 0 and 

1. The problem here is that  G (with this Nash structure) admits no nonconstant 

Nash maps into ~, whereas if H is an algebraic group over ~ (even a nonlinear 

one) then H(~)  can be Nash embedded into R n for suitable n. Theorem B says 

that  this problem is the only obstacle to obtaining global results. We say that  G 

is an affine (real) Nash group if there is a Nash embedding of G into some ~ .  By 

an isogeny between two groups we mean a surjective homomorphism with finite 

central kernel. 

THEOREM B: Let G be a (topologically) connected real Nash group. Then there 

is an algebraic group H defined over R and a Nash isogeny between G and the 

connected component of H(]~). 

The proof of Theorem B involves passing to universal covers and using some 

facts on commutat ive real algebraic groups. Theorem B can be viewed as an 

equivariant version of a classical result of Artin and Mazur [A-M] which states 

that  a connected affine Nash manifold is Nash diffeomorphic to a connected com- 

ponent of a nonsingular real algebraic variety. We conjecture that  an analogous 
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result to Theorem B holds in the p-adic case. 

We sh,~uld mention that if G is centreless then it is rather easy to definably 

embed C in GL(n, F)  for suitable n, using the adjoint representation. The image 

of G wih then be an open subgroup of its Zariski closure. 

The third case we consider is that of pseudo-finite fields. These fields may 

be characterized in a number of ways. Model-theoretically they are defined as 

the infinite models of the theory of finite fields. Algebraically they are defined 

as perfect pseudo algebraically closed fields, with exactly one field extension of 

an given degree (namely with absolute Galois group the profinite completion of 

Z). (Here a field F is called pseudo algebraically closed or PAC if any absolutely 

irreducible variety defined over F has an F-rational point.) 

THEOREM C: Let G be a group definable in a pseudo-finite field. Then there 

is an algebraic group H defined over F and a definable (in F)  virtual isogeny 

between G and H(F) .  

Here by a virtual isogeny between two groups, say G and H, we mean an 

isogeny between subgroups G1 of finite index in G and Hi  of finite index in 

H. In Theorems A and B, there was an intermediate "geometric" category be- 

tween definable groups and algebraic groups, namely Nash groups. In the case 

of pseudo-finite fields there is no such obvious geometric category. The proof of 

Theorem C (namely obtaining some definable virtual isogeny from a "generic" 

definable relation) requires the use of stable group theory. This sounds rather 

strange as pseudo-finite fields are unstable. However what we use is "local" sta- 

bility theory, or stability theory with respect to a fixed collection of formulas. 

This is reviewed in section 5. The theory as developed there can be used to de- 

rive results of Nori [No] on subgroups of GL(n, Fp), with applications to "strong 

approximation theorems". This will appear in a subsequent paper by the authors. 

It can be shown that  Theorem C also holds for perfect PAC fields whose ab- 

solute Galois groups are finitely generated as profinite groups, or more generally 

"small" [Fr-J, p.185]. To see this one must check that such fields fit into the 

axiomatic framework which we use in this paper: specifically (i) that  they are 

"geometric substructures" of their algebraic closure (see section 2), and (ii) that 

their class of definable sets has the "Sl-property" (see again section 2). The 

verification of these facts was carried out in unpublished notes by the first au- 

thor. However, in this paper we limit ourselves to the special case of pseudo-finite 
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fields, and we will cite the paper [Ch-vdD-Mac] for the necessary verifications in 

this case. (i) and (ii) above are there derived from an extension of the Lang-Weil 

estimates for the number of points on varieties over finite fields. 

One delicate point worth mentioning is the distinction between "definable" 

objects in F and "interpretable" objects in F. An object X (group or other- 

wise) is i n t e r p r e t a b l e  in the structure M if X is a definable subset of M n / E  

where E is a definable equivalence relation on M n. When M has "elimination of 

imaginaries" (discussed below), any interpretable object X is in definable bijec- 

tion with an object Y de f inab le  in M (namely Y is a definable subset of M k, 

for some k). The first author has verified that perfect PAC fields with "small" 

Galois group (in particular pseudo-finite fields) have elimination of imaginaries. 

("Small" means that the absolute Galois group of the field F has only finitely 

many continuous homomorphisms into any given finite group.) This adds con- 

siderable force to Theorem C : any i n t e r p r e t a b l e  group is definably virtually 

isogeneous with the set of F-rational points of an algebraic group defined over 

F. This form of Theorem C is easily seen not to generalise to arbitrary PAC 

fields. For let F be a PAC field of characteristic 0 say, such that the set of nth 

powers (F*) n of F* has infinite index in F*. The quotient group G -- F*/(F*) n 

is interpretable in F and is an infinite commutative group of exponent n. This 

clearly excludes G being even abstractly isomorphic to H(F) for H any algebraic 

group. However we should point out here, to prevent any confusion, that even 

when F does not have elimination of imaginaries (for example when F = Qp) 

the definable/interpretable distinction does not present problems as far as groups 

of the form G(F)  are concerned, where G is an algebraic group defined over F: 

Identify G with its points in some algebraically closed field F containing F. G is 

a not necessarily affine variety. So G is formed by piecing together finitely many 

affine varieties (each defined over F)  with F-definable identifications of suitable 

Zariski open sets. As such G is an object interpretable, rather than definable, 

in F. However, as F has elimination of imaginaries and quantifier-elimination, 

there is an F-definable bijection between G and some quantifier-free definable 

group H which is a subset of (~)k some k. H is no longer a "geometric" object, 

but it makes sense to speak of H(F ) ,  the points of H whose coordinates are in 

F,  and in F there is a definable bijection between G(F)  and H(F) .  Thus we can 

(up to definable isomorphism) view G(F) as a group de f inab le  (rather than just 

interpretable) in F. 



208 E. HRUSHOVSKI AND A. PILLAY Isr. J. Math. 

We describe now the organisation of this paper. We will proceed at a rather 

general model-theoretic level, that  of "geometric structures" and "geometric sub- 

structures of strongly minimal sets". In section 5, we even make an excursion 

into general stability theory (which is essential for the results on pseudo-finite 

fields). So as to make the paper accessible to non model-theorists, we will in sec- 

tion 1, present the required model-theoretic background, together with a lexicon 

for translating between the language of types, canonical bases etc. and that of 

varieties, fields of definition etc., in the case where the structure we are work- 

ing in is an algebraically closed field. In section 2 we present the notions of a 

geometric structure, and geometric substructure of a strongly minimal set, and 

verify that the fields we are interested in fall into such classes. Again we provide 

a suitable lexicon. In section 3, we prove a result which lies behind and provides 

the thread connecting Theorems A, B and C. The result is proved for geometric 

structures, but in the language of fields it says that for suitable fields F,  if G is 

a group definable in F then there is an algebraic group H defined over F and a 

definable finite-to-finite relation between certain "generic" points of G and H(F) 
which respects the respective group laws. 

In section 4, we present the necessary background concerning Nash manifolds 

and groups, and we prove Theorems A and B. In section 5, we introduce "local" 

stability theory and equivariant stability theory, and study its interaction with 

geometric structures under suitable hypotheses. 

In section 6 we prove Theorem C (again in a general context). 

ACKNOWLEDCEMENT: We wish to thank the referee for his helpful suggestions 

concerning the organisation of this paper and its style. 

1. Model-theoretic background 

We now present some background which hopefully should enable the non "model- 

theory specialist" to read this paper. We refer the reader to [P5] for a more ex- 

tended introduction to model theory and stability theory. We assume knowledge 

of the notions : first order language L, L-structure M, satisfaction of formulas 

and sentences, elementary equivalence, elementary extension, theories. All struc- 

tures (or, as we say: mode l s )  are assumed to be infinite. We use M to denote 

a model. A, B , . . .  denote subsets of a given model M, a, b, c denote elements of 

M, and a, b , . . .  denote (finite) tuples from M. (Eventually for various reasons 

we confuse tuples and elements.) If M is an L-structure and A is a subset of M, 
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then LA is the language L augmented by names for the elements of A. We write 

Th(M) for the complete first order theory of M. 

1.1 TYPES AND SATURATION Let M be an L-structure, and A C M. By 

a (partial) type ~(x)  over A in the sense of M (where x is a finite tuple of 

variables) we mean a collection of formulas of LA with free variables x, such that  

for every finite subset ~1 of ~, M ~ (3x)(A~I(x)) .  The compactness theorem 

implies that if �9 is such a partial type, then there is an elementary extension N 

of M, and some a in N which realises ~, namely N ~ ~b(a) for all ~b C ~. ~(x)  

as above is said to be a complete type over A, if for every r  E LA, either 

~b or its negation -~b is in ~. S(A) denotes the set of complete types over A 

(this depends on M or rather the theory of M with names for elements of A). 

Complete types are often denoted p, q etc. If a is in M, then tPM(a/A ) (or just 

tp(a/A) if M is understood) is the set of LA formulas ~b(x) such that M ~ r  

(which is clearly a complete type over A). 

M is said to be n - s a t u r a t e d  (where n is an infinite cardinal), if for every 

A C M with ]A[ < ~, and every type ~(x)  over A (in the sense of M),  �9 is 

already realised by a tuple in M. We will call a model M s a t u r a t e d  if M is 

IMI-saturated. We will assume that any structure M has saturated elementary 

extensions of arbitrarily large cardinality. A sufficiently saturated model plays the 

role of a "universal domain". One of the other benefits of working in a saturated 

model is that  if M is saturated, A is a small subset of M (namely ]A I < IMI), 

and a, b are tuples in M (of the same length) then tp(a/A) = tp(b/A) iff there is 

an automorphism of M which fixes A pointwise and takes a to b. 

A de f inab le  se t  in M is a subset X of M n (some n < w) such that  for some 

formula r  of LM, X = {a E Mn: M ~ r We call the set X A-def inab le  

if such a formula r can be chosen in LA. In particular X is 0-definable if it is 

definable by a formula with no auxiliary parameters. If M is saturated, X is a 

definable set, and A is a small subset of M, then X is A-definable iff X is fixed 

setwise by every automorphism of M which fixes A pointwise. We often identify 

formulas with the sets they define. 

Sometimes we are interested in certain special partial types. For example, by 

qftp(a/A) we mean the set of quantifier-free formulas of LA satisfied by a in M. 

If a model M is fixed by the context, we use ~ .-.  to denote t ruth in M. If 

�9 (x) is a partial type over a small subset of M, and ~(x) is a formula over M, 

by ~(x) ~- ~(x) we mean that  for any elementary extension N of M and a in N, 
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if N ~ ~(a) ,  then N ~ ~(a). 

1.2 ALGEBRAICITY AND DEFINABILITY If A C M and a �9 M, we say that  

a is in the a lgebra ic  c losure  of A (in M), written a �9 acl(A), if there is a 

formula ~(x) over A (namely of LA) such that M ~ ~(a), and moreover such 

that  ~(x) has only finitely many solutions in M (the latter is clearly expressed 

by an LA-sentence). 

We say that  a is in the de f inab le  c losure  of A, a �9 dcl(A), if for some 

LA-formula ~(X), a is the unique solution of ~ in M. Note that  both  acl(-) 

and dcl(-) are idempotent operators. A set of tuples { a b . . . , a m }  from M is 

said to be a lgeb ra i ca l ly  i n d e p e n d e n t  ove r  A (where A C M) if for each i, 

ai • acl(A U U{aj: j ~ i}). 

1.3 M eq Knowledge of M eq is not essential to this paper, but is useful anyway. 

Let M be an L-structure. M eq is a many sorted structure in a language L eq 

obtained in a canonical fashion from L and M as follows. For each 0-definable 

equivalence relation E on M n, let SE be a new sort. The interpretation of the 

sort SE in M eq is simply the set Mn/E. 

In particular M itself is the interpretation of the sort S=. L sits inside L eq, 

with all the relations and functions of L restricted to the sort S=. In addition, 

L eq will contain for each E as above, a function symbol f from n-tuples of sort 

S= to sort SE, the interpretation in M eq being f(a) = alE. 

The theory of M eq is determined by the theory of M, T = Th(M).  So T h ( M  eq) 

is denoted T eq. All properties of T pass to T r M can be viewed as either an 

L-structure, or as the interpretation of the sort S= in the Leq-structure M eq. 

These amount to the same thing in every possible sense. 

M is said to have e l i m i n a t i o n  o f  imag ina r i e s  if for any c E M r there is 

some tuple b from M such that  in M Cq, c �9 dcl(b) and b �9 dcl(c) (we say c 

and b are interdefinable). This property could also be expressed without passing 

to M~q: assuming M saturated, M has elimination of imaginaries iff for every 

definable set X in M there is a tuple a from M such that  any automorphism of 

M fixes X setwise iff it fixes a. M has weak elimination of imaginaries, if for 

every c E M ~q there is some tuple b from M such that  c �9 dcl(b) and b E acl(c). 

If M has elimination of imaginaries then any definable set in M eq is in definable 

bijection with a definable subset of some M k. 

It is known that any algebraically closed field (K, +, .) has elimination of 
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imaginaries. If A is a subset of M (or even of M~q), by acl~q(A) we mean 

{a E Meq: a E acl(A)}. 

1.4 STRONGLY MINIMAL SETS A structure M is said to be s t r o n g l y  m i n i m a l  

if for any elementary extension N of M, any definable subset X of N is finite 

or cofinite (in N). (This notion was introduced by Baldwin and Lachlan [BL], 

but the reader should also see [P5].) If M were already w-saturated, it would 

be unnecessary to pass to elementary extensions in the above definition. It is 

known that algebraic closure behaves very nicely in a strongly minimal structure 

M: if A U {a,b} C M, and b E acl(A U {a}) "- acl(A) then a E acl(A U {b}). 

We say that  acl(-) defines a p r e g e o m e t r y  on M (we already have transitivity). 

It follows that  if A C M, and a is a tuple from M, then any two maximal A- 

algebraically independent subsets of U a have the same cardinality, which we call 

dim(a/A). This clearly depends only on p = tp(a/A), so we also call this number 

dim(p). We should remark that if A is a subset of M eq and a, b E M then still 

we have that  b E acl(A U {a}) \ acl(A) implies a E acl(A U {b}) in M eq. Thus 

if a is a tuple from M and A C M eq then dim(a/A) still makes sense. Note 

that dim(ab/A) = dim(a/Ab) + dim(b/A). We say that  a is i n d e p e n d e n t  from 

b over A if dim(a/Ab) = dim(a/A) Off dim(b/Aa) = dim(b/A), by the previous 

sentence). We will also express this independence by saying that tp(a/bA) does  

no t  fo rk  ove r  A. More generally we will say tp(a/B) does  n o t  fork  over  A if 

dim(a/B) = dim(a/A). 
Note that if A c M (or even M ~q) and both { a l , . . . , a n } ,  {b l , . . . , bn}  are 

A-Mgebraically independent subsets of M, then 

t p ( a l , . . . , a n / A )  = tp (b l , . . . , bn /A) .  

(This follows from the definitions, by induction on n.) 

This dimension theory can be extended to M eq as follows: let a E M eq, and 

let A be some subset of M eq. Then we can clearly find b l , . . . ,  b~ E M, such that 

{bl,..., bn} is A-algebraically independent, a E ac l (b l , . . . ,  b,, A) and {b l , . . . ,  bn} 

is minimal such. Without loss of generality {bl, �9 �9 �9 br } is AO {a}-algebraically in- 

dependent (and hence a is interalgebraic with (b r+ l , . . . ,  bn) over AU{bl , . . . ,  b~}). 

We then define dim(a/A) to be n - r. Again we say tp(a/B) does not fork over 

A, or a is independent with B over A, if dim(a/B) = dim(a/A). 

1.5 DIMENSION OF DEFINABLE SETS Let us assume M to be strongly minimal 

and saturated. From the definitions it follows easily that if r  y) is an L-formula 
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then there is a L-formula 5(y) such that for any b in M, r  b) defines an infinite 

subset of M iff M ~ 5(b). (5(y) just says that there are at least k solutions x of 

r  y), for some suitably large k, depending on the formula r Iterating this 

observation, we see that if r  xn, y) is an L-formula, then there is again an 

L-formula 5(y) such that for any b in M, M ~ 5(b) if and only if "for infinitely 

many xl (for infinitely many x2( .... (for infinitely many x ~ ( r  x~, b))...))". 

So clearly 6(b) holds iff for any small set B containing b there is an n-tuple a 

from M such that M ~ r  and d i m ( a / B )  = n. We say in this situation 

that  dim(~b(x, b)) = n, or equivalently dim(X) = n, where X is the subset of Mn 

defined by r  b). 

We in general define dim(~b(xl, . . . ,  x , ,  b)) = dim(X) to be the greatest k < n 

such that for some projection (existential quantification) Y of the X defined by 

r  onto M k, dim(Y) = k. Then it can be checked there is again some 5(y) 

depending on r and k such that for any b, M ~ 5(b) iff dim(r b)) = k. (We 

use here that  algebraicity over a set is witnessed by a formula.) If X is a definable 

subset of M '~, then it can be seen that for any A C M over which X is defined, 

dim(X) = m a x { d i m ( a / A ) :  a e X } .  

We will typically say that  a is a gene r i c  point of X over A, if X is A-definable, 

a e X and dim(X) = d im(a /A ) .  Also the dimension of a finite disjunction of 

formulas is the maximum of the dimensions of the disjuncts. 

If p is a complete n-type over A, dim(p) is clearly min{dim(r r E p}. By 

compactness and previous observations, ifp is a complete type over A, and A C B, 

then there is some a realising p such that a is independent with B over A (i.e. 

d i m ( a / B )  = d i m ( a / A )  = dim(p)). 

These considerations also apply to definable sets and types in Me% 

In a similar fashion we can define dim(~(x))  for ~(x)  a partial type. 

1.6 MULTIPLICITY AND CANONICAL BASES We continue with the assumptions 

of 1.5. Let p be a complete type over A. Let A C B. Then the uniqueness 

assertion at the end of 1.4 implies that the set { t p ( a / B ) :  a realises p and a is 

independent from B over A (namely d i m ( a / B )  = d i m ( a / A )  = dim(p))} is finite, 

and moreover has size bounded by some number k, depending on p and not B. 

The least such number k (as B varies) is called the multiplicity of p, denoted 

mult(p), p is said to be stationary if mult(p) = 1. 

Multiplicity is witnessed again by a formula: 

If X is a definable subset of M '~ with dim(X) = m, then by mult(X) we 
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mean the greatest k such that X can be partitioned into k definable sets, 

each of dimension m. 

One can then show that,  if dim(p) = m, then mult(p) = min{mult(~b(x): r �9 p 

and dim(C) = m}. Note that if the A-definable set X c M n has dimension m 

and multiplicity 1, then for any two generic points a, b in X, tp(a/A) = tp(b/A). 

Now suppose p �9 S(A) is stationary, and let r  b) �9 p with dim(r  b)) = 

dim(p) = m say, and mult(~z(x,b)) -- 1. Now by the remarks in 1.5, the equiva- 

lence relation E defined as 

bl E b2 iff dim(r bl) & r b2)) = m 

is 0-definable. Thus b~ E is an element in M eq (in the sort SE), and we define 

the canonical base of p, denoted Cb(p) to be b~ E. This depends formally on the 

choice of the formula r  b). But if we chose instead ~(x, c) in p with dimension 

m and multiplicity 1, then if E ~ is the corresponding equivalence relation, we 

would have that b~ E is interdefinable with c / E ' .  So Cb(p) is well-defined up 

to interdefinability. Note Cb(p) C dcl(A). Cb(p) has the following canonical 

feature: if C is a subset of M or even M ~q then there is some a realising p with 

dim(a/A U C) = dim(a/C) = m(= dim(p)), if and only if Cb(p) �9 acl(C). If also 

mult(tp(a/C)) = 1, then even Cb(p) �9 dcl(C). Now it is a fact that any strongly 

minimal structure has weak elimination of imaginaries, after naming finitely many 

parameters (See section 2 of [P7].) In this situation, there is for any complete type 

p, some tuple c from M such that c �9 acl(Cb(p)), and Cb(p) �9 dcl(c). In addition 

the "finite equivalence relation theorem" implies that if A is an algebraically 

closed subset of M, then any p E S(A) is stationary. 

In section 3, we shall be working with a strongly minimal structure M (there 

called D) which has elimination of imaginaries. In this case Cb(p) is interdefinable 

with some tuple from M. Again the considerations in this section also apply to 

types and defnable sets in M eq. 

A group G definable (or even interpretable) in M is said to be (definably) 

c o n n e c t e d  if mult(G) = 1, or equivalently if G has no definable proper subgroups 

of finite index. 

1.7 ALGEBRAICALLY CLOSED FIELDS, TYPES, AND VARIETIES Let F be an al- 

gebraically closed field. The first key fact about F is that  Th (F )  has quantifier- 

elimination in the language L = {+, . ,  - ,  0, 1}, namely every formula ~(x) of L is 

equivalent in F to a quantifier-free formula r  In particular for A a subset of 
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F and points a, b, tp(a/A) = tp(b/A) iff qftp(a/A) = qftp(b/A). Another conse- 

quence of quantifier-elimination is that  the model- theoretic and field-theoretic al- 

gebraic closures coincide, namely if A is a subset of F and a E F then: a E acl(A) 

in the sense of 1.2 iff a is in the field-theoretic algebraic closure of Fo(A), where 

F0 denote the prime field of F,  and Fo(A) denotes the field generated by A. If F 

has characteristic 0 then a E dcl(A) (in the sense of 1.2) l i fe  E Fo(A). However if 

char(F)  = p > 0 one must also deal with the inverse of the Frobenius, and in this 

case dcl(A) = {path roots of elements of F0(A): n < w}, the "purely inseparable 

closure" of Fo(A). If g is an infinite cardinal, then quantifier elimination also 

implies that F is g-saturated iff the transcendence degree of F over F0 is g. 

An affine algebraic variety V included in F ~ is of course a definable set, and 

quantifier elimination means that,  conversely, any definable set is a Boolean com- 

bination of affine algebraic varieties. In particular every definable subset of F is 

finite or cofinite, and thus F is strongly minimal. In particular the notions such 

as dimension, developed in sections 1.4, 1.5 and 1.6 apply. Clearly dim(a/A) is 

the same as tr.degree (Fo(A)(a)/Fo(A)) and so if V is an affine variety, dim(V) 

is the same as the algebro-geometric dimension of V. 

For V an (affine) variety there is an algebro-geometric notion of V being defined 

over K < F. This agrees with the model-theoretic notion in characteristic 0. 

However in characteristic p > 0, V is defined over K < F in the model-theoretic 

sense iff V is defined over the purely inseparable closure of K in the algebro- 

geometric sense. 

If V is irreducible then V has multiplicity 1. So for any K over which V 

is defined there is a u n i q u e  type p(x) E S(K) such that  p(x) ~- x E V and 

dim(p) = dim(V). In fact p(x) is precisely the type of a generic point of V over 

K,  and if F is sufficiently saturated (i.e. has infinite transcendence degree over 

K)  then p(x) will be realised in F by some a. For such a, V in turn is the 

variety over K generated by a, namely the set of points in Fn say, which satisfy 

all the polynomial equations over K satisfied by a. It is well-known that V has 

a smal les t  field of  de f in i t ion  (in the algebro-geometric sense), say K0. Then 

K0 is finitely generated and it turns out that K0 is precisely the canonical base 

of p(x) in the following sense: let K0 be generated over the prime field Fo by 

the point c. Let d E F eq be Cb(p). Then ~ E dcl(d) and d E dcl(c). In fact F 

has elimination of imaginaries. This was first observed by Poizat [Poll. In fact 

elimination of imaginaries can be deduced from 
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(i) weak elimination of imaginaries, which holds in any strongly minimal struc- 

ture in which acl(0) is infinite, and 

(ii) the fact that unordered sets of tuples can be coded up in fields using sym- 

metric functions. 

We will also be considering not necessarily affine varieties and algebraic groups. 

We assume some familiarity with these objects (and we refer model-theorists to 

Poizat's expository paper [Po3]). Suffice it to say that an abstract variety is natu- 

rally an object interpretable in the algebraically closed field F. The reason we say 

interpretable rather than definable is because of the equivalence relation which 

arises from identifying various open subsets of the affine charts of V. The reader 

should believe that,  if V is "defined over" a subfield K of F,  then V ( K )  (the set 

of K-rational points of V) makes sense and V ( K )  is interpretable in K. We will 

often speak of points of V as living in F n (some n). In this situation we will be 

working inside some open affine piece of V. On the other hand, by elimination 

of imaginaries V will be in K-definable bijection with some (quantifier-free) de- 

finable subset W of F m (some m). In this case W ( K )  is simply W A K m, and is 

(in K)  in definable bijection with V(K) .  For all intents and purposes one could 

work with W in place of V. 

1.8 MODEL-THEORETIC VERSIONS OF WEIL'S THEOREM An important result 

of Andr~ Weil [We] states, roughly speaking, that an algebraic group (over an 

algebraically closed field), or more generally an algebraic homogeneous space, 

can be recovered from birational data. There are two related results which 

have model-theoretic content, and which we will be using. The first is due to 

Hrushovski [B1] , and we express it here in the strongly minimal case. 

PROPOSITION 1.8.1: Let M be a (saturated) strongly minimal structure. Let 

A be a small subset of M. Let p(x), q(y) be two stationary types over A. Let 

f ( x l ,  x2), g(x, y) be partial A-definable functions such that 

(i) for al, a2, A-independent realisations of p(x), f (a l ,a2)  is defined, and if 

a3 = f (a l ,  a2) then a3 realises p, and a3 is independent with each oral,  a2 

over A, 

(ii) for a, b independent realisations of p, q respectively, g(a,b) is defined, re- 

alises q, and is independent with a over A, 

(iii) if  al, a2, a3 are independent realisations of p then f ( f (a l ,a2) ,a3) )  = 

f (a l ,  f(a2, a3)), 
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(iv) if al,  a2 realise p, b realises q, and {al, a2, b} is A-independent, then 

g( f (al ,  a2), b) -- g(al, g(a2, b)). 

Then there are interpretable in M a (connected) group G, a (multiplicity 1) 

set X and a transitive action of G on X ,  all defined over A, as well as partial 

A-definable invertible functions hi, h2 such that 

(v) for a realising p, hi (a) realises the generic type of G, and for b realising q, 

h2(b) realises the generic type of X ,  

(vi) for independent realisations al, a2 of p, h l ( f (a l ,a2))  = f (a l ) "  f(a2), 

(vii) for independent realisations a of p and b of q, h2(g(a, b)) = hi(a) �9 h2(b). 

The next result takes place in an algebraically closed field. The attribution 

is unclear: proofs were given by van den Dries in the characteristic 0 case and 

Hrushovski [B2] in the general case. Strictly speaking this is in any case just a 

special case of Well's original theorem (modulo a trick of Serre in the positive 

characteristic case). 

PROPOSITION 1.8.2: Let F be an algebraically closed field. Let G be a definably 

connected group definable in F. Then there is an algebraic group H (over F)  and 

a definable (in F)  isomorphism f between G and H. If  moreover char(F) = 0 

and G is definable with parameters in a subfield k of F, then both H and f can 

be chosen to be k-definable. 

(Here we identify H with H(F)  the F-rational points of H.) In fact the proof 

of 1.8.2 proceeds by first observing that, by quantifier elimination, "generically" 

the group multiplication on G is given by a rational function (or a quasi-rational 

function in the positive characteristic case). Well's proof constructs from this 

generic rational group law an algebraic group H, which then turns out to be 

definably isomorphic to G. Connectedness (multiplicity 1) plays a crucial role in 

obtaining this isomorphism. 

Our main theorems in this paper can be considered as generalisations of Propo- 

sition 1.8.2 to a wider class of fields F,  and actually generalisations of Well's 

theorem. The problems we will face in more general contexts are 

(i) the group operation on G will (even generically) not be given by a rational 

function, but rather by a function which satisfies an algebraic equation, 

(ii) definable sets in F will no longer have any "finite multiplicity" property, 

and thus obtaining a global definable isomorphism presents problems. 
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There is actually also a third related model-theoretic result, namely Hrushov- 

ski's "group configuration theorem" [B2]. This theorem roughly states that (say 

in the context of a strongly minimal structure M) one can recover a situation 

as in the hypotheses of Proposition 1.8.1 from a certain "algebraic- dependence- 

theoretic" configuration of tuples in M. We will neither state nor use this result. 

However the proof of Proposition 3.1 will be quite closely related to the proof of 

the group configuration theorem (in fact the proof of 3.1 will basically just consist 

in checking that certain constructions in the group configuration theorem can be 

carried out in a suitable substructure of the structure under consideration). 

2. Geometric structures, substructures a n d  fields 

In this section we present the model-theoretic framework for the main results of 

this paper. 

De~nition 2.1: The infinite structure M is said to be a geometric structure, 

if 

(i) in any model N of Th(M),  the algebraic closure operation defines a pre- 

geometry, namely the exchange axiom is satisfied: if a, b C N, A C N and 

b E acl(A, a) \ acl(A), then a e acl(A, b), 

(ii) for any formula ~(x, y) of the language of M there is some n < w such that  

for any b in M ~(x,b) M is finite iff I~(x,b)M]sh < n. 

Remarks 2.2: As in sections 1.4 to 1.6 of section 1, clause (i) in Definition 1.1 

gives rise to a notion of independence in geometric structures. Similarly clause 

(ii) yields the existence of "generic points". In these remarks and the subsequent 

lemma, we summarise the situation. Let M be a geometric structure, A C M 

and a E M ~. The fact that the algebraic closure operation defines a pregeometry 

implies that dim(a/A) = the cardinality of any maximal A-algebraically inde- 

pendent subtuple of a, is well defined. We will say that a is independent from B 

over A if dim(a/A U B) = dim(a/A). We then obtain : 

(i) (symmetry) if a is independent from b over A then b is independent from a 

over A, 

(ii) (additivity). dim(a, b/A) = dim(a/b, A) + dim(b/A). 

If A C M, r  is a partial type over A, and M is IA]+-saturated, then 

dimA(O) is defined to be 

max{dim(a/A): a in M and M ~ ~(a)}. 
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If M is not saturated, we read dimA((I)) in an IAl+-saturated elementary exten- 

sion of M, namely we define dimA((I)) = max{dim(a/A):  a in some elementary 

extension M'  of M, and M'  ~ (b(a)}. | 

LEMMA 2.3: Let M be a geometric structure. 

(i) I rA  C B C M and ~(x)  is a partial type over A, then dimA(~) = dimB((I)). 

(Thus we can omit the base set, and just  write dim(~).) 

(ii) Let ~(x, y) be a formula, with length(x) = n. Let m <_ n. Then there is 

a formula r  such that for any b, dim(~(x, b)) = m iff r (and this 

equivalence holds in any model). 

(iii) Let X1, . . . ,  Xk be definable subsets of M n. Then dim(X1 U . . .  U Xk) = 

max{dim(X~): i = 1 , . . . ,  k}. 

Proof: (i) and (ii) are proved just like in the special case where M is strongly 

minimal (see 1.5 above). (iii) is left to the reader. | 

For M a geometric structure and (I)(x) a partial type over A, if a realises (I) 

and dim(a/A)  = dim((I)) we call a a gener ic  po in t  of (I) (or of (I) M) over A. 

The content of Lemma 2.3 (i) is that generic points over arbitrary sets exist. 

To get a reasonable model theory for a geometric structure M we need a notion 

of dimension satisfying additional properties. The nicest example of a geometric 

structure is simply a strongly minimal set. The crucial general feature of strongly 

minimal sets is the "finite multiplicity" property, which can fail badly in general 

geometric structures, for example in O-minimal structures - -  note that  an O- 

minimal structure is also geometric. We will make use of two nice properties 

which hold in all strongly minimal structures and also in several other interesting 

geometric structures. 

Definition 2.4: Let M be a saturated geometric structure. 

(i) M has property (E) if: whenever X C M n is definable and dim(X) = m 

then there is no definable equivalence relation E on X infinitely many 

classes of which have dimension m. 

(ii) M has property ($1) if: whenever X C M n is definable with dim(X) = m, 

and r y) is a formula, then there do not exist bi for i < w such that 

dim(X O ~(x, bi)) = m for all i but dim(~(x, bi) & ~(x, bj)) < m for i # j .  

(iii) An arbitrary geometric structure has property (E) (or ($1)) if: some, equiv- 

alently, every saturated model of Th(M) has the property. 
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Remarks 2.5: 

(i) Clearly ($1)implies (E). 

(ii) We say a structure M has almost weak elimination of imaginaries if every 

b E M eq is interalgebraic with some finite tuple from M. (Compare to: (a) 

weak elimination of imaginaries, which states that for any b E M eq there 

is a finite tuple a from M such that b E dcl(a) and a E acl(b), and (b) 

elimination of imaginaries, which states that  any b E M eq is interdefinable 

with some tuple a from M.) It is not difficult to prove that a geometric 

structure with almost weak elimination of imaginaries satisfies (E). I 

The geometric structures with which we shall be concerned in this paper are 

certain fields in which algebraic closure equals field-theoretic algebraic closure. 

The following definition gives a generalisation. For the purposes of this paper, 

the reader may take D below to be an algebraically closed field; cf. Definition 

2.9 below. 

Definition 2.6: Let D be a strongly minimal set which has quantifier elimination 

in a language L. Let F be an infinite substructure of D. We will call F a 

g e o m e t r i c  s u b s t r u c t u r e  o f  D if 

(i) F (as an L-structure) is a geometric structure, 

(ii) F is definably closed in D. Namely, if b E D and b E dcl(F) in the sense of 

the structure D, then b E F,  

(iii) for any model (D1, F1) of Th(D,  F),  algebraic closure in the structure F1 

equals quantifier-free definable algebraic closure, namely if A c F1, a E F1 

and a E acl(A) then there is a quantifier-free formula r  over A such that  

F1 ~ r  and r has only finitely many solutions in D1. 

Remarks/Definition 2. 7: Let F be a infinite substructure of the strongly mini- 

mal set D. We may assume that D = acl(F). It is not difficult to see that  for 

any model F1 of Th (F )  there is D~ such that (D~, F1) is elementarily equivalent 

to (D, F)  and moreover D1 = acl(F1) in L. To say that F is a geometric sub- 

structure of D means exactly that  for any model F1 of Th(F) ,  for D1 as above 

F1 is definably closed in D1, for any A C F1, the algebraic closure of A in F1 

in the sense of the L-structure F1 is precisely FiM(algebraic closure of A in D1), 

and that  2.1 (ii) holds for F.  

(ii) Let F be a geometric substructure of D, and assume that  F is a saturated 

model of Th(F) .  For a E F ~ and A c F, tp(a/A) means the type of a over 
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A in the sense of F.  Similarly X C F n will be called A-def inable  if it is 

definable in the structure F with parameters in A. We say a c dcl(A), if a 

is definable with parameters from A in the structure F. 

qftp(a/A) denotes the set of quantifier-free formulas over A, true of a, or 

equivalently the type of a over A in the sense of D. Similarly qfdcl(A) is the set 

of elements of F definable over A by quantifier-free formulas. Note that,  as F is 

definably closed in D, for A C F, qfdcl(A) is precisely the definable closure of A 

in D in the sense of the structure D. 

For a E F n and A C F, note that dim(a/F) is a function of qftp(a/A) and 

equals dim(a/A) in the sense of the strongly minimal set D. 

(iii) Let F be a geometric substructure of D, and X c_ D n a set definable in 

D with parameters from F. Then X ( F )  = X A F ~ is definable in F. This is 

because X is quantifier-free definable in D over F,  and so the same quantifier-free 

formula defines X ( F )  in F. I 

LEMMA 2.8: Let F be a geometric substructure of D. Assume D has weak 

elimination of imaginaries. Let A C F be algebraically closed inside F (namely 

acl(A)NF = A), and let a be a tuple in F. Then qftp(a/A) is stationary (and thus 

there is finite Ao C A such that qftp(a/A) does not fork over Ao, and qftp(a/Ao) 

is stationary). 

Proof: By elimination of imaginaries in D and the finite equivalence relation 

theorem, the canonical base of stp(a/A) in the sense of V is in acl(A) A qfdcl(a). 

The latter set equals A as F is definably closed in D. I 

In the special case of fields we amalgamate Definitions 2.1 and 2.6 as follows: 

Definition 2.9: Let F be a field, viewed as an L-structure, where 

L = {+, . ,  0, 1, - } .  We call F a g e o m e t r i c  field if F is a geometric substructure 

of F where F is the (field-theoretic) algebraic closure of F.  

Remark 2.10: As remarked in 1.7, F has quantifier elimination in L. So to say 

that F is a geometric field clearly means 

(1) F is perfect, 

(2) for any model F1 of Th(F) ,  and subset A of F1, the algebraic closure of A 

in F1 in the model-theoretic and algebraic senses coincide, 

(3) for each L-formula ~(x, y) there is some N < w such that in any model F1 

of Th(F) ,  and for any b in F1, if ~(x, b) defines a finite subset of F1 then 

it defines a set with at most N elements. I 



Vol. 85, 1994 DEFINABLE GROUPS 221 

PROPOSITION 2.11: The following fields are geometric fields: 

(1) The real field R. 

(2) The p-adic field Qp. 

(3) Any pseudo-finite field. 

Proof: (1) and (2) follow easily from standard quantifier elimination results of 

Tarski and Macintyre. In fact Tarski shows that Th(R) has quantifier elimination 

after adding a symbol for the ordering (or equivalently for the squares). Macintyre 

[Mac] shows that Th(Q v) has quantifier elimination after adding predicates for 

the nth powers, for all n. (3) is more subtle and is proved in [Ch-v.d.D-Mac], 

Corollary 5.7, using the notion "algebraically bounded". | 

Remark 2.12: In [Ch-v.d.D-Mac] it is shown that in arbitrary perfect PAC fields, 

model-theoretic and field-theoretic algebraic closures coincide. So, the only ad- 

ditional property needed for a perfect PAC field F to be a geometric field is 

property (3) in Remark 2.10. This was shown to hold for "Frobenius fields" by 

Jarden [Ja]. In fact (3) has been proved for arbitrary perfect PAC fields by the 

first author in recent unpublished work (and explained to the second author by 

Zoe Chatzidakis). | 

Remark 2.13: Let F be a geometric field which we assume to be reasonably 

saturated. Let F0 denote the prime field of F. We summarise the translation 

between the model-theoretic and algebraic language: 

(i) If A is a subset of F then dim(a/A) = tr.degree(Fo(A)(a)/Fo(A)) for each 
a E  F n. 

(ii) Let k be a relatively algebraically closed subfield of F,  and a E F '~, then 

the variety over k generated by a is irreducible. (This is obtained from the 

statement "qftp(a/k) is stationary" in 2.8, using the translation in 1.7). 

(iii) Let X be a definable subset of F n, defined over the finite set A, say. Then 

dim(X) --- algebro-geometric dimension of )~, the Zariski closure of X in 

The proof of (iii) is quite straightforward: for each a �9 X, the variety V(a) C 

(F)~ generated by a over Fo(A) has algebro-geometric dimension equal to 

dim(a/A) (by (i)). By saturation of F and compactness, there are a l , . . . , a k  

in Z such that X C (V(al)(F) U. . .  U Y(ak)(F)). So )~ C Y(al) U . . .  U V(ak). 

Thus the algebro-geometric dimension of )~ is at most dim(X). The reverse 

inequality is immediate. 
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The difference with algebraically closed fields is that in the case of an arbitrary 

geometric field F,  if V(F) is a Zariski closed (hence definable) subset of F n with 

dim(V(F))  = m, even if V is absolutely irreducible there may be still be disjoint 

definable subsets of V(F), say X and Y such that  dim(X) = dim(Y) = m. 

Or putting it another way, there may be many different types p(x) such that  

p(x) t- z C V and dim(p(x)) = m (although there will be a unique such quantifier- 

free type). Or putting it even another way, assuming V is defined over k, there 

may be several different types over k of generic points a E V(F) of V over k. 
| 

Finally we consider the examples R, Qp, and pseudo-finite fields in a little 

more detail. The definable sets in the real and p-adic case are often called semi-  

a lgeb ra i c  sets. 

First both R and Qp are topological fields (given by the Euclidean topology, 

and valuation topology respectively). Dimension then has a topological interpre- 

tation. 

Fact 2.14: See [P2] and [P3]. (F  = R or Qp). Let X be a definable subset of 

F n. Then dim(X) = max{k < n: some projection of X onto F k contains an 

open set}. 

Moreover for each of the fields R, Qp, there is a notion of an analytic function 

(from say an open subset of F n into F).  In fact a Nash function is precisely a 

definable analytic function from some open definable subset X of F n into F.  

Fact 2.15: [BCR] and [v.d.D-S]. Again let F be R or Qp. 

(i) Let X be an open definable subset of F '~ and let f :  X ~ F be a definable 

function. Then there is some open dense definable subset Y of X such that 

f l y  is analytic (namely Nash). 

(ii) Suppose k < F,  a E F and a E acl(k). Then a e dcl(k). | 

Concerning the properties (E) and ($1) we have: 

Remark 2.16: R has (E) but not (S1). Qp does not even have (E). 

Proof: The fact that R (or more generally any O-minimal structure) has prop- 

erty (E) is proved in [P6]. R does not have ($1), as we can find infinitely many 

disjoint intervals in R (which are clearly defined by the same shape of formula). 

QB does not have (E), because the equivalence relation v(x) = v(y) is definable 

and has infinitely many classes, all infinite (and so of dimension 1). II 
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LEMMA 2.17: Let F be R or Qp. Let A be a countable subset o f F ,  and let X 

be an A-definable subset o f f  n. Then X contains a generic point over A, namely 

there is a E X such that d im(a/A)  = dim(X). 

Proo~ The point here is that F is not Wl-saturated, so we cannot just use the 

definition of dim(X). However we know from 2.14 that some projection 7r of X 

onto F k contains an open set, where k = dim(X). Baire category implies that 

~r(X) is not contained in a union of A-definable sets of dimension < k. So there 

is b E 7r(X), such that dim(b/A) = k, and then b extends to a in X such that 

dim(a/A)  = k. | 

As far as pseudo-finite fields are concerned, the main point is: 

Fact 2.18: Let F be a pseudo-finite field. Then F has the ($1) property. 

Proof: This is proved in [Ch-v.d.D-Mac], but we review the situation. Let us 

suppose F to be an w-saturated pseudo-finite field. Let X c F "~ be a definable 

in F. We have already pointed out that d dim(X)'  set = = algebro-geornetric 

dimension of the Zariski closure )(  of X in (~)m. Using a generalisation of the 

Lang-Wei[ estimates for the number of points on varieties over finite fields, it 

is shown in [Ch-v.d.D-Mac] that in addition to the dimension d of X ,  a certain 

positive rational number it(X) can also be assigned to X. It is shown further 

that 

(i) for any formula ~(x, y) there are a finite number of pairs (d', #') associated 

thus to sets defined by ~(x, a') as a' varies. 

We also have (see 4.10 of [Ch-v.d.D-Mac]): 

(ii) if X c Y are definable subsets of F m with dim(X) = dim(Y) then #(X)  _< 

(iii) Let X and Y be disjoint definable subsets of F ~. If dim(X) = dim(Y), 

then # ( X U Y )  = I z (X )+#(Y) .  If dim(X) < dim(Y) then # (XUY)  = #(Y) .  

The ($1) property for F follows immediately from (i), (ii) and (iii). | 

It should be said that all these fields (~, Qp and pseudo-finite fields) are unsta- 

ble (in the sense of model theory). Stability will be formally defined in section 5. 

For now we remark that if F is a stable field then F*, the multiplicative group of 

F, can have no proper definable subgroups of finite index. But each of the fields 

we are considering clearly does have such multiplicative subgroups. 

The first author has (in unpublished notes) defined a PAC-substructure of a 

strongly minimal set D to be a geometric substructure F of D such that  for any 
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F-definable multiplicity 1 set X C D ~, X ( F )  ~ 0. In addition he defines F to be 

bounded if for any model (F1, D1) of Th(F,  D), the group G of automorphisms 

of acl(F1) in D1 which fix F1 pointwise, is small (in the sense again that  any 

for any finite group H there are only finitely many continuous homomorphisms 

of G into H). He proves that if F is a bounded PAC-substructure of D and D 

has elimination of imaginaries, then F has elimination of imaginaries and has the 

($1) property. Using this fact in place of 2.18, all of section 6 of this paper can 

be carried over to that  context. 

3. A " g r o u p  configuration theorem" 

In this section we prove the basic common result lying behind Theorems A, B 

and C. The result can be roughly stated as : 

(*) Let F be a geometric substructure of D. Let G be a group which is defin- 

able in F. Then there is a connected group H (quantifier-free) definable in 

D with parameters from F such that G is "generically algebraically equiv- 

alent" to H(F) .  

More precisely, throughout this section we will be working under the following 

hypotheses: 

(1) F is a geometric substructure of the strongly minimal set D, where D has 

elimination of imaginaries (and of course quantifier elimination). 

(2). For any finite subset A of F,  and any A-definable subset X of F n, X has 

an A-generic point. (The point here is that such an A-generic point of X can be 

found already in F rather than in some elementary extension of F. Note that 

this implies that  D is w-saturated.) 

(3) G is a group definable in F .  (So G is a definable subset of some cartesian 

power of F,  and the group operation of G is definable in F.) 

Under these hypotheses we prove: 

PROPOSITION 3.1: There is a finite subset A of F over which G is defined, a 

connected group H quantifier-free definable in D over A, points a, b, c of G and 

points a', b', e' of H(F) ,  such that 

(i) a. b = c (in G) and a' .  b' = c' (in H). 

(ii) acl(aA) = acl(a'A), acl(bA) = acl(b'A) and acl(eA) = acl(e'A). 

(iii) a and b are A-generic points of G and a is independent with b over A. 

(iv) Similarly a' and b' are A-generic points of H and are independent with each 

other over A. 
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PROPOSITION 3.1 '  (Res ta tement  for fields): Let F be •, Qp or an w-saturated 

pseudo-finite field (or more generally a geometric field satisfying (2) above). Let 

G be a group definable in F over a finite set Ao. Then there is a finite subset A 

of F containing Ao and a connected algebraic group H defined over Fo(A) such 

that there are points a, b, c of G and points a', b', e' of H(F)  satisfying O) (ii), 

(iii), (iv) above. 

In the proof  we will let a, b, c, a t etc. denote  tuples f rom F (and somet imes  

also f rom D).  The  nota t ion  f rom 2.7 and 1.2-1.6 is in effect. For x, y in some 

group x �9 y denotes the produc t  of x and y in tha t  group. 

The  proof  will proceed th rough  a series of lemmas.  

Let A0 be a finite subset  of F over which G (and its group opera t ion)  are 

defined. Let  d im(G)  = n. Let  a, b be  Ao-independent ,  Ao-generic points  of 

G. Let  c = a . b .  Note  tha t  dim(a/Ao) = dim(b/Ao) = dim(c/Ao) = n and 

dim(a,  b/Ao) = dim(a,  b, c/Ao) = 2n. In F ,  c �9 dcl(a,  b, Ao), b E dcl(a, c, Ao) The  

main  point  is to modify  a, b, and c (staying inside F )  in such a way tha t  dcl is 

replaced by qfdcl (namely  definable closure in the sense of D).  

LEMMA 3.2: There are a finite subset A2 o fF,  containing Ao, with {a, b} and A2 

independent over Ao, and tuples al, bl, cl in F such that acl(a,  A2) = hal(a1, A2), 

acl(b, A2) -- acl(bl, A2), acl(c, A2) = acl(cl ,  A2), bl �9 qfdcl(A2, a l ,  Cl) and  cl �9 

qfdcl(A2, a l ,  bl). 

Proof: Let (by assumpt ion  (2) on F )  x '  �9 G be generic over Ao U {a, b}. Let 

y~ = x ~ �9 b and z ~ = x ~ . a -1 .  (So z ~ �9 c = y ' . )  Then  addi t iv i ty  of dimension yields 

easily 

(1) dim(a,  c, b, y', z ' /do) = 3n, and dim(a,  c, b/Ao) = d im(z ' ,  c, y'/Ao) = 2n. 

CLAIM: Let  c ~ be any tuple  in D such tha t  

qftp(c'/a, z', b, y', Ao) = qftp(c/a, z', b, y', Ao). 

Then  c' E acl(c, Ao). 

Proof of the claim: If  not then  dim(c, c' / Ao ) > n + l .  By  (1) d im(a ,  b / c, c', Ao ) <_ 

n - 1 and also d im(z ' ,  y'/c, c', A0) < n - 1. I t  clearly follows tha t  

d im(a,  b, z', y', c, c'/Ao) < 2(n - 1) + n § 1 = 3n - 1 

which contradicts  (1), and proves the claim. 
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Let X = (c = Cl, c2 , . . . ,  c~} be the set of conjugates in D of c over (a, b, z', y~, 

Ao} (namely the set of elements in D whose type in D over {a, b, z', y', Ao} is the 

same as that of c). Note that X is finite as c E acl(a, b, z t, y~, Ao). By the fact 

that D has elimination of imaginaries, there is a tuple Cl from D such that cl 

and X are interdefinable in D. It follows that cl E qfdcl(a, b, z p, y~, Ao) and thus 

Cl is in F.  Denote the concatenated sequence (a, z p) by al, and (b, yr) by bl. Let 

A1 = Ao U {x~}. So we now clearly have al, bl, Cl in F with 

(2) acl(a, A1) = acl(al, A1), acl(b, A1) = acl(bl, A1), acl(c, A1) = acl(Cl, A1) 

and moreover cl ~ qfdcl(A1 U {al, bl}). 

Let zl E G be generic over A1 U {a,b}. Let Xl = Zl �9 a and Yl -= Zl �9 c. Then 

Xl �9 b = Yl. Moreover by choice of Zl, 

(3) Xl and b are Ao-independent, Ao-generic points of G, and 

(4) {xl, 5} is independent with x' over Ao. 

So exactly as in (2) we can find tuples x2, Y2 and b2 in F such that  

(5) acl(xl, A1) = acl(x2, A1), acl(yl, A1) = acl(y2, A1), acl(b, A1) = acl(b2, A2) 

and y2 E qfdcl{x2, b2, A1}. 

As acl(b, A1) = acl(bl, A1) nothing is lost in (5) in assuming that  

(6) b2 contains bl. 

Note that,  by generic choice of zl over A1 we have: 

(7) dim(a1, b2, Cl, x2, y2/A1) = 3n, dim(x2, Y2, b2/A1) = dim(a1, cl, b2/A1) = 

2n. 

The same computation as in proof of the claim above shows that  if b~ is in 

D and has the same quantifier free type as b2 over A1 t2 {al, Cl,X2,y2} then 

b~ E acl(Al,b2). So, letting A2 denote A1 U {zl}, it follows that if b~ is in 

D and has the same quantifier-free type as b2 over A2 U {al, cl, x2, Y2} then 

b~ C acl(A2, b2). Thus again let b3 in D be interdefinable in D with the finite set 

of conjugates in D of b2 over A2 U {al, Cl, x2, Y2}- Then 

(8) b3 e qfdcl(A2 U {al, cl, x2, Y2}). 

Again it follows that b3 is in F. (5) and (2) yield 

(9) Y2 and Cl are both in qfdcl(A2 U {al, x2, 52}). 

Thus Y2 = f(b2) and Cl -= g(b2) for some quantifier-free (A2 t2 {al, x2}) o 

definable functions f and g. So for any b~ in D satisfying the same quantifier-free 

type as b2 over A2 U { al ,x2,  y2, cl }, also Y2 = f ( b~ ) and Cl = g(b~). By choice of 

b3 we then clearly have 

(10) Y2 and Cl are both in qfdcl(A2 U {al, x2, 53}). 
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Rename (al, x2) as al,  (y2, Cl) as Cl and b3 as bl. By (8) and (9), Lemma 3.2 

is proved. 

Let A denote acl(A2) N F. From now on we work in D. 

Remark 3.3: qftp(al,  bi, e l /A) and qftp(bl, Cl/A, al) are both stationary. 

Proof: qftp(ai,  bl, cl /A)  is stationary as al ,  bl, cl are from F and A is relatively 

algebraically closed in F.  (See Lemma 2.8.) Now bi is independent from AU {al} 

over A. Thus also qftp(bi/A,  al))  is stationary. But Cl E qfdcl(A, al,  bi). Thus 

qftp(bl, ci /A,  ai) is stationary. | 

Let the tuple a from D be the canonical base of qf tp(bl ,c l /A,  al). So a E 

qfdcl(A, el) .  By Remark 3.3, a is in F. Let r = qftp(a/A) ,  ql = qftp(bl/A),  q2 = 

qftp(cl /A).  So dim(ql) -- dim(q2) = n. The next remark is to be understood in 

the sense of D. In fact from now on D will be the structure we work in, except 

that we take care that certain points are in F.  

Remark 3.4: r is stationary, with dim(r) = n. a is independent with each of bl, 

Cl over A, Cl E qfdcl(A, a, bl) and bl �9 qfdcl(A, a, cl). 

Proof: The stationarity of r follows from 2.8. Note that {al, bl, cl } is pairwise A- 

independent. As a �9 acl(al, A), dim(r) _< dim(al /A)  = n. For the same reason 

a is independent with each of bl, Cl over A. The fact that cl �9 qfdcl(A, al ,bl)  

and bi E qfdcl(A, al,  cl) is part of qftp(bl, Cl/Aai),  and so is preserved when we 

replace ai by a. In particular n = dim(cl /A,  bl) ~ dim(a/A,  bi) = dim(a/A) .  

So dim(r) = n. | 

Remark 3.4 is rather important. Assuming we are working in say a charac- 

teristic 0 geometric field F,  this is what is going on: Fo(A)(a) is the field of 

definition of the variety generated by (bl, Cl) over Fo(A)(al). The variety gen- 

erated by a over Fo(A) is absolutely irreducible (and r is the type of a generic 

point of it, namely of a). The transcendence degree of Fo(A)(a) over Fo(A) is n. 

Also, F0(A, a, bl) = Fo(A, a, cl). In the positive characteristic case, the same is 

true after we replace: "field generated by" by "purely inseparable closure of field 

generated by". 

To return to the general context: Remark 3.4 says that r is the type of a 

generically defined invertible map from the locus of ql to the locus of q2. To be 

more precise, as cl �9 qfdcl(a, bl, A) there is some A-definable partial function 

in the sense of D, say #, such that ci = #(a, bl). We write it(a, 51) as a.bl 
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(hopefully with no ambiguity), and note that whenever a '  realises r, and b~ 

realises ql with a '  independent with b~ over A, a '  �9 b~ is well-defined, realises q2 

and is independent with each of a t, b~ over A. Similarly there is an A-definable 

partial function v such that v(a, Cl) = bl. We write v(a, Cl) as a -1  .cl, and again 

for a ' ,  c~ independent realisations of r, q2 respectively, (at) -1 .  c~ realises ql (and 

clearly a .  ((a') - 1 .  Cl) = cl). Note that 

Remark 3.5: If a l ,  a2 realise r, b' realises ql, b' is independent with {a, a t} over 

A, and al  �9 b' = a2 �9 b', then al  = a2. 

Proo~ Let c' be the common value of al" b' and a2" b'. Then dim(b t, c'/A, al, a2) 
= dim(b', c'/A, al)  = dim(b t, c'/A, a2) = n. Clearly then each of al ,  a2 is the 

canonical base of qftp(b', c'/A, al, a2). From 1.6 we see that al  is interdefinable 

w i t h  a2 .  However, as actually a l  and 62 have the same quantifier-free type (over 

A) it follows, by considering in more detail the equivalence relation E in 1.6 that 

a 1 ---- a 2. | 

Field theoretic proof of 3.5: With above notation, let V1 be the variety over 

Fo(A, al) generated by (b', c') and V2 the variety over Fo(A, a2) generated by 

the same point (b', c'). Then (b', c') is a generic point of each of V1, V2 over 

F0(A, al ,  a2). So V1 = V2. There is an automorphism f (of the ambient alge- 

braically closed field) taking al  to a2 (as they have the same quantifier-free type). 

As F0(al)  is the field of definition of V1, and Fo(a2) the field of definition of V2, 

this automorphism takes V1 to V2, thus (as V1 = V2) fixes V1. So f is the identity 

on Fo(al) ,  in particular a2 = a l .  | 

Remark 3.5 justifies our calling a the g e r m  of an invertible function from ql 

to q2. Our aim now is, by "composing" a with the "inverse" of an independent 

copy of a, to find the germ of an invertible function from ql to itself. This will 

then yield a set-up in which we can apply Proposition 1.8.1. 

Let a l ,  ~2 be A-independent realisations of r (note that we can choose al ,  a2 

in F if we so wish). Let b2 realise ql independently with {al,  a2} over A. (Again 

b2 can be chosen in F if the ai are.) Then al  �9 b2 is defined, realises q2 and is 

independent with a2 over A. Thus a~ -1 �9 (~1 �9 b2) = b3 is defined and realises ql. 

Intuitively we think of "a21.a1 '' as the germ of an invertible map from ql to ql. 

Remark 3.6: b3 c qfdcl(A, al, a2, b2), b2 E qfdcl(A, al,a2, b3), each of b2, b3 is 

independent with {al,  a2} over A. Also qftp(b2, b3/A, al, a2) is stationary. 
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Proo[: Easy  and left to  the reader. | 

Let the tuple T in D be the canonical base of qftp(b2, b3/A, a l ,a2) .  Then as 

in 3.4, b3 E qfdcl(A, T, b2) and b2 E qfdcl(A, T, b3). We write 7 - b 2  = b3 and 

7 -1 �9 b3 = b2. Let s = q f tp (T /A) .  Again s is stationary,  and T can again be 

viewed as the germ of an invertible map  from ql to itself. The analogue of 3.5 

also holds: 

Remark  3.5~: If  T �9 b t = b H and T ~ �9 b' = b ~t and b t is independent  from {T, T t} 

over A, then T = T ~. 

LEMMA 3.7: With  the above notation, dim(s) = n. Also T iS independent  with 

each o r a l ,  a2 over A. 

Proof'. We first remark tha t  each of a l ,  a2, T is in the algebraic closure (in 

fact in the qfdcl) of A together  with the other two. This is basically because 

these elements arise as canonical bases. Wi th  this observation we first deduce 

the dimension par t  of the lemma from the independence part .  

dim(a1,  a2, T/A)  - =  dim(a1, a2/A)  = 2n. 

dim(a1, a2, T /A)  = d im(a2 /a l ,  T, A)  + d im(T /a l ,  A)  + d i m ( a l / d )  

= 0 + d i m ( T / A )  + n. 

So d i m ( T / A )  = n. Now we prove independence of each of a l ,  a2 from T over A. 

As a mat te r  of nota t ion we may  as well assume tha t  al .bl  = cl (i.e. a l  = a).  

Let x E G be generic over A U {a, b}. (a, b, c are as chosen at the beginning 

of the proof  of 3.1, and remember  tha t  al ,  bl, Cl are each interalgebraic over A 

with a, b, c respectively.) We may  suppose tha t  a2 is independent  with {a, b, x} 

over A. Let y = x . b  and z = y . c  -1 (where �9 is in the sense of the group 

G). Then  z = x �9 a -1. So a2 is independent  from {x, y, z, a, b, c} over A. As 

a l  E acl(a, A), a l  is clearly independent from {z, cl, y} over A. As r is s ta t ionary  

it follows tha t  a l  and a2 have the same quantifier-free type  over A u {z, cl, y}. 

Thus in D we can find elements xl  and b2 such tha t  qf tp(a l ,  Cl, bl, x, y, z / A )  = 

qftp(a2, Cl, b2, Xl, y, z /A ) .  It  is easily seen tha t  T �9 bl = b2. We now make the 

following claims which imply the desired independence s tatement:  

(A) {x, Xl} is independent  from each of a l ,  a2 over A. 

(B) T e acl(z, Xl, A). 

We first discuss (A). Let X be the collection of all points currently considered 

in the proof  of 3.7, namely X = {al ,  b, c, bl, Cl, x, y, z, a2, xl ,  b2}. I t  is clear tha t  
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d im(X /A)  = 4n. On the other  hand X is clearly contained in ac l (a l ,  x, x l ,  b], A) 

say, as well as acl(a2,x, Xl ,b l ,A) .  But  each of the points  a l ,  a2, x, x l ,  b has 

dimension n over A. This  forces dim(al ,x ,  Xl /A)  = dim(a2,x,  x l / A )  = 3n, 

yielding (A). 

Now we discuss (B). The  a rgument  in the previous pa rag raph  shows tha t  

(i) dim(a1,  x, xl ,  b]/A) = 4n, whereby {al ,  x, Xl} is independent  f rom bl over 

A. 

But  clearly a~ C acl(a] ,  x, x l ,  A). Thus  

(ii) {al ,  a2, x, x]}  is independent  from bl over A. 

By (ii) and the fact tha t  b2 C dcl(~-, bl) we see tha t  

(iii) T = the canonical  base of qftp(bl ,  b2/ah a2, x, Xl, A). 

On the other  hand,  we have 

(iv) b2 e acl(x, x , ,  bl, A) 

(For y e acl(bl, x, A) and 52 e acl(y, x l ,  A)). Thus  qftp(bl ,  b2/ah a2, x, xl ,  A) 

does not fork over {x, x , ,  d} .  So by (iii) and 1.6, T e acl(x, x l ,  d ) ,  proving (S).  

The  L e m m a  is proved. | 

We revert  now to the nota t ion  of 3.6. Clearly T E qfdcl(trl,  a2, A) and  we wri te  

T = c~21 �9 a l .  By  3.6, r is independent  with each of b2, b3 over A. We write 

T- b2 = b3 and ~.-1.  b3 -- b2. 

LEMMA 3.8: There  is a function f ,  (quantifier-free) definable in D with p a r a m -  

eters in A, such that for independent realisations T1 and T2 Of a, f ( r l ,  ~'2) realises 

s and is independent over A with each ofT1, T2, and moreover for b' realising ql 

independent of {T1, T2} over A, I(T1, T2) " b' = TI" (r2" b). 

Proos Let a2 realise r such tha t  a2 is independent  f rom {T1,T2, b'} over A. 

By L e m m a  3.7 there  are reMisations a l ,  o'3 of r such tha t  71 = a~ -1 �9 a2 and 

T2 ---- o ' 2  - 1  �9 a3. Note  tha t  r2 �9 b' realises ql and is independent  with ~1 over A, 

and thus 71 �9 (T2 �9 b') is well-defined, and equals say c'. On the other  hand,  

f rom L e m m a  3.7 it follows tha t  a l  and a3 are independent  over A and {a l ,  a3} 

and b' are independent  over A. Thus  a ~ l . a 3  = T3 realises s and clearly T3 is 

the canonical  base of qftp(b ' ,  c'/A1, T1, r2), and also ~'3" b / = c'. Thus  for some 

(quantifier-free) A-definable function f ,  f(71, v2) = ~-3 and the l e m m a  is proved. 

| 

I t  is now a simple m a t t e r  to check tha t  s and ql satisfy the hypotheses  of 

Propos i t ion  1.8.1. Specifically the function f in 3.8 will correspond to the  function 
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f in 1.8.1 and the function (~-, b) --~ r .  b will correspond to the function g in 1.8.1. 

The only thing to check is hypothesis (iii) in 1.8.1, namely associativity. So let 

T1, ~-2, r3 be independent realisations of s. L~t b realise ql independently from 

{T1, T2, 73} over A. Then clearly from 3.8, r l -  (r2. (T3" b)) = f(T1, f(T2, T3))" b = 

f(f((T1, T2), "/-3))" b. By 3.5', f ( r l ,  f(T2, 7"3)) = f(f((Vl, 7-2), T3)), aS required. 

Let H,  X and hi,  h2 be as given by Proposition 1.8.1. We can assume that  

hi,  h2 are both  the identity function. Thus already s is the generic type of H,  

ql is the generic type of X,  and for rl ,  r2 independent realisations of s, the 

product T1.~-2 in the group H is exactly f ( r l ,  T~). Also the notation (T, b) ~ T.b 

for the group action of H on X agrees with the earlier notation when T and b are 

independent realisations of s, ql. 

We now complete the proof of Proposition 3.1. Let a, bl, cl be as fixed prior 

to Remark 3.4 (so these are all in F).  Let a l  E F satisfy: qf tp(a l /A)  = r and al  

is independent from {a, bl, cl} over A. (This is easily obtained from assumption 

(2)). Then a l  1 �9 Cl is in F,  realises ql and is independent from al  over A. 

Similarly a~ -1 �9 a is in H(F) ,  realises s and is independent from al  over A. Let 

c2 denote a l  1 "cl and T denote a l  I �9 a. Let A1 = acl (A,a)  n F. Then 

dim(a,b,c/A1) = 2n, acl(A1,T) = acl (Al ,a)  and acl(Al,c2) = acl(Al,c).  

We make a second extension of a similar nature. Let T1 E F realise s indepen- 

dently from {T, bl,c2} over A1. Let r2 = T �9 r l ,  b2 = r~ -1 �9 bl Then T2 �9 b2 = c2, 

and it may be checked that  b2 is independent from {T, C2, bl} ove r  A1. Let 

A2 = acl(A1, bs) A F. We then clearly have: 

dim(a, b, c/As) = 2n, acl(A2, a) = acl(A2, T), acl(A2, b) = acl(A2, T1), 

acl(A2, c) = acl(A2, 7"2) , and r -  Vl = r2. 

Finally we may shrink As to a finite set over which G and H are defined and 

with the properties just obtained. This completes the proof of Proposition 3.1. 

| 

Proof of 3.1': In the special case where F is a geometric field, then H is a group 

definable in /~ (algebraic closure of F) ,  defined over Fo(A). In the characteristic 

0 case, by 1.8.2 there is an algebraic group H1 defined over Fo(A) and an Fo(A)- 

definable isomorphism f between H and H1. But then f ( H ( F ) )  = H i ( F ) ,  and 

in the conclusion of 3.1 we may replace H by H1. In the positive characteristic 
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case, the proof of 1.8.2 in either [B] or [Po] shows that there is an F-definable 

isomorphism f between H and an algebraic group HI defined over F.  Let A1 be 

a finite subset of F containing A, such that f and H1 are defined over the purely 

inseparable closure of Fo(A1) .  By assumption (2) we may assume that the points 

a and b from the conclusion of 3.1 are generic independent over A1. This clearly 

suffices as before. 

4. N a s h  m a n i f o l d s  a n d  g r o u p s ,  a n d  t h e  p r o o f s  o f  T h e o r e m s  A a n d  ]3 

We first discuss real and p-adic Nash manifolds (although some of this is not 

really necessary for Theorem A). We consider the real case first. By "defin- 

able" we mean definable in the structure (R, + , . ,  0, 1), or equivalently semialge- 

braic. Recall that a Nash function is an analytic semialgebraic function from an 

open semialgebraic subset X of R n into •. Nash manifolds were introduced in 

[A-M] and also studied in [Sh]. The latter can be also used as a reference for the 

definitions below. 

Det~nition 4.1: (i) A (real) n-dimensional Nash manifold is an object 

( X ,  V1, . . ., Vk, f l ,  . . ., f k )  where 

(i) X is a Hausdorff topological space, 

(ii) Each V~ is an open subset of X and X = [,J Vi, 

(iii) f~ is a homeomorphism of V~ with an open semialgebraic subset Ui of R n , 

(iv) for each i, j ,  the homeomorphism induced by f~ o f ~  1 between fj(Vi nVj) C 

Uj and fi(Vi n Vj) C Ui is Nash (namely each coordinate of the map is a 

Nash function). 

(ii) A Nash map from the Nash manifold (X, 1/1,.. . ,  Vk, f l , . . . ,  fk) into the 

Nash manifold (Y, W1, . . . ,  Win, g l , . . . ,  gin) is a continuous map f i  X ~ Y such 

that for each 1 < i < k and 1 <_ j <_ m ,  U~j = f i ( f - l ( w j )  A V~)) is (open) 

semialgebraic in U~ and the restriction of gj o f o f:(1 to Uij is Nash. 

(iii) A Nash manifold X is said to be affine if there is a Nash embedding of X 

into some R m. 

A few words should be added concerning (iii). If X and Y are Nash manifolds, 

then by a Nash embedding from X to Y we mean a Nash map f from X to Y 

which is also an injective immersion (see [S-W]). In this situation f ( X )  is called 

a N a s h  s u b m a n i f o l d  of Y. 

If X, Y are Nash manifolds, then the topological space X • Y has naturally 

the structure of a Nash manifold. 
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By a (real) Nash group, we mean a Nash manifold X equipped with a group 

operation * such that  �9 is a Nash map from X • X into X and inversion is a 

Nash map from X into X.  

It  is not difficult to see that  a Nash manifold is in a natural  sense interpretable 

in ]~, namely think of X as the disjoint union of the Ui, modulo the (definable) 

equivalence relation E,  where a E Ui is E-equivalent to b E Uj if fi o f71(b) = 

a. By elimination of imaginaries in R, this interpretable object is in definable 

bijection with some set Z in some ]~'~. However, the original topological/Nash 

structure on X is only reflected "generically" in Z. 

On the other hand, in [P2] it is observed that  a group G definable in R can 

be definably equipped with the structure of a Nash group, or equivalently G is 

definably isomorphic to a Nash group. This means the following: G begins life as 

a group interpretable in R, namely (by elimination of imaginaries in R) both G 

and the graph of the group operation on G are definable sets in R m , R 3m (some 

m), and there is a Nash group H,  which when viewed as in the above paragraph 

as definable in R, is definably isomorphic (as a group) to G. So clearly this 

isomorphism transports  the Nash structure on H to a Nash structure on G, with 

respect to which G is now in particular a topological group. Moreover this Nash 

structure on G is unique up to Nash isomorphism. It  is also remarked in [P2] 

that  G is connected with respect to its Nash group topology if and only if G has 

no definable subgroup of finite index. 

Definition 4.2: A map f from a Nash manifold (X, V~, fi)  into a Nash manifold 

(Y, Wj ,g j )  is said to be locally Nash if f is continuous and for every a E V~ there 

is an open set V C V~ containing a, and some j such that  f ( V )  c Wj,  f i (V)  is 

(open) semialgebraic in Ui and gj o f o f~-i restricted to V is Nash. | 

Not every locally Nash map between Nash manifolds is Nash. For example we 

can give the interval [0, 1) the structure of a Nash manifold by identifying 0 and 

1. This is exactly what we mean by the Nash manifold R /Z  . The "covering" 

map 7r: R --, R /Z  is locally Nash but not Nash. (If it were Nash then Z would 

be definable in R.) 

On the other hand we have ([Sh]): 

FACT 4.3: Let X be a Nash manifold, and X '  an a//ine Nash manifold. Then 

any locally Nash map from X to X '  is Nash. 

The conclusion of 4.3 can also be expressed by saying that  any analytic locally 
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definable map from X to X '  is definable. 

By Fact 4.3 and the previous remarks, R/Z is not an affine Nash group. In 

fact we can see directly that there are no nonconstant Nash maps of ]~/Z into R. 

For suppese g is such. Let 7r: ]~ --* R/Z be the covering map. Then g o n: R --~ R 

is an analytic locally Nash map, such that for some lr E R, X -- (g o ~r)-l(Tr) is 

an infinite discrete subset of R. As g o 7r is locally Nash, there is some open set I 

in R, and a polynomial P(x , y )  such that for all x �9 I, P(x ,  (g o ~r)(x)) = 0. By 

analytic continuation P(x,  (g o ~r)(x)) = 0 for all x �9 R, whereby g o ~r is Nash, so 

X is definable, a contradiction. The reader may be a little confused, imagining 

that R/Z is the circle group, and thus isomorphic to S02(R) (the multiplicative 

group of complex numbers of norm 1), which is clearly affine. The issue here is 

that  this isomorphism, although analytic, is not Nash or even locally Nash, so is 

not in our category. 

We define a local ly  N a s h  man i fo ld  exactly as in Definition 4.1, except that  

in (i) we allow there to be infinitely many affine open V~. A locally Nash man- 

ifold is then locally definable, in the obvious sense. The natural class of maps 

between locally Nash manifolds is then that  of locally Nash maps, interpreted as 

in Definition 4.2. One thus obtains the notion of a locally Nash group. This is 

useful, as in general the universal covering group of a Nash group will only have 

the structure of a locally Nash group. In fact Fact 4.3 shows that  the universal 

cover of SO2(R) is a locally Nash group which does not have the structure of a 

Nash group. 

Everything we have said above can be done with Qp in place of ~ One has 

a notion of p-adic analytic function, and the topology is given by the valuation. 

Thus we obtain the categories of p-adic Nash manifolds, and p-adic Nash groups. 

Qp does not have elimination of imaginaries. It is nevertheless pointed out in 

[P3] that if G C Q~ is a definable group, then G can be definably equipped with 

the structure of a p-adic Nash group. 

Typical examples of Nash groups are objects of the form G(R) where G is an 

algebraic group defined over R. In fact: 

FACT 4.4: Let G be a connected algebraic group defined over R. Then G(R) is 

an a~ne  Nash group. 

Proof: We identify G with its set of C-rational points, G(C). It is well-known 

that  G is quasi-projective, as an abstract variety, namely that  there is a bira- 
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tional isomorphism, defined over ~, between G and some algebraic group whose 

underlying variety is quasi-projective (namely a Zariski open subset of a projec- 

tive variety). So we may assume G to be a locally closed subset of some complex 

projective space CP n. Thus G(R) is clearly a Nash submanifold of ~ .  On the 

other hand, in [BCR] there is given a rational embedding i of ~ into some real 

affine space ~m (which is basically stereographic projection). The map i then 

provides a Nash embedding of G(R) into R m . Thus G(R) is an affine Nash group. 

I 

The reader should be aware that  there are two notions of connectedness which 

we will be using, connectedness as an algebraic group (as in Fact 4.4) and con- 

nectedeness as a (real) manifold. For example GLn is a connected algebraic 

group, but GLn(R) is not connected as a Nash group (the connected component 

of the identity is the group GL~ (~)0 of matrices with positive determinant).  

We now say a few words about  covering spaces, especially in the category 

of (locally) Nash groups. Let M be a connected topological manifold. Recall 

that  a covering space of M is a connected manifold M ~ and a continuous map 

7r: M '  --* M such that  every point a C M has an open neighbourhood U such 

that  l r - l (U)  is a disjoint union of open sets, the restriction to each of 7r being 

a homeomorphism with U. Every M has a universal cover, namely a simply 

connected covering space, which is unique in the obvious sense. If M also has 

a continuous group structure, then its universal cover (M, 7r) can be equipped 

with continuous group structure in such a way that  ~- is a homomorphism. In 

this case Ker(~r) is a discrete central subgroup of M (which is isomorphic to the 

fundamental group of M). 

Remark  4.5: Let G be a connected locally Nash group. Let (G, 7r) be the uni- 

versal cover of G. Then G can be equipped (uniquely) with the structure of a 

locally Nash group, in such a way that  7r is a locally Nash homomorphism. | 

Remark 4.6: Let G be a connected locally Nash group and Z a discrete (and 

thus central) subgroup of G. Then G / Z  can be equipped with the structure of a 

locally Nash group in such a way that  the quotient map re: G ---* G / Z  is locally 

Nash. 

LEMMA 4.7: Let G be a Nash group and Z an infinite discrete subgroup of G. 

Then G / Z is not an affine Nash group. 
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Proof: Let rt: G --+ G / Z  be the natural locally Nash homomorphism. If G / Z  

were affine, then by Fact 4.3, p would be Nash (namely definable), and thus 

ker(p) =- Z would be definable, which is impossible as Z is infinite and discrete. 

| 

On the other hand, the quotient of a locally Nash group by an infinite discrete 

subgroup may very well be an affine Nash group. 

We now proceed to the proofs of Theorems A and B. 

Proof of Theorem A: We assume F to be R or Qp. Let G be a Nash group 

over F (which just means a group definable in F, equipped with its unique Nash 

group structure). Proposition 3.1 applies, so let H, A, a, b, c, a', b', c' be as given 

there. Let k be the subfield of F generated by A. By Proposition 1.8.2 we may 

assume that H is an algebraic group defined over k. As a, b, c are each generic 

points of G over k, we may assume that each is a k-independent n-tuple in F n, 

an open neighbourhood in F n of which lies in G. As H (F)  is also a Nash group, 

we may assume the same for a', b', c'. By 2.15 (ii) a and a' are interdefinable 

over k in F (namely a E dcl(k, a') and a' E dcl(k, a)), and similarly for b, b' and 

C, C I. 

We now work completely in F 

LEMMA 4.8: There are open k-definable neighbourhoods, U, V and W in G of 

a, b, c respectively, and U', V',  W '  in H( F) of a t, b', d,  and k-definable functions 

f ,  g, and h such that 

(i) f (a)  = a' and f is a (Nash) homeomorphism between U and U', g(b) = b' 

and g is a (Nash) homeomorphism between V and V ~, and h(c) = c ~ with 

h a (Nash) homeomorphism between W and W'.  

(ii) for a" in U and b" in V,  f (a")  . g(b") = h(a" . b"). 

(iii) for a l lx ,  zC  U, x - 1 . c E  V a n d z . x  - 1 . c E W .  

Proof of Lemma 4.8: (i) We have that  a and a' are interdefinable over k. Thus 

there is a first order formula ~o(x, y) with parameters in k such that in F: qo(a, a') 

holds and in addition there is unique x' such that qo(a, x') holds, and a unique x 

such that qo(x, a') holds. As a, a' E F n and dim(a/k)  = dim(a' /k)  = n, there are 

open neighbourhoods U1 of a and U2 of a' such that for x C U1 there is unique 

y with ~(x, y), and for y E U2 there is unique x with qo(x, !/). We thus obtain 

k-definable functions f :  U1 --+ F '~ and f - l :  U2 --+ F '~, where e.g. f ( x )  is the 
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unique y such tha t  ~ ( x , y )  holds. By Fact 2.15 (i), there is an open dense k- 

definable subset  U3 of U1 such tha t  f r U3 is analytic.  Similarly there is an open 

dense K-def inable  U4 c U2 on which f - 1  is analytic.  Again as dim(a/k)  = n, 

a C U3, and as dim(at~k) = n, a' E U4. Thus we clearly obta in  some open U 

containing a on which f is a Nash homeomorph i sm  with an open ne ighbourhood 

U ~ of a '  (and f (a)  = a~). The  same thing can be done for b, b' and c, c' to 

obta in  pairs of ne ighbourhoods  V, V ~ and W, W' ,  so tha t  (i) is satisfied. Now 

as dim(a,  b/k) = 2n, and f (a ) .  g(b) = h(a. b), there is an open ne ighbourhood Z 

in F 2~ of (a, b) such tha t  for all (x, y) �9 Z, f ( x ) .  g(y) = h(x.  y). We may  shrink 

U and V such tha t  U x V C Z, so now also (ii) holds. 

We may  shrink U, V fur ther  so tha t  U .  V C W (in the group G). Let  U1 C U 

be an open ne ighbourhood of a such tha t  U -1 �9 c C V. Replace U by U1, and 

clearly (iii) holds. 

COROLLARY 4.9: The map X from U - 1 .  a to (U')  - 1 .  a' defined by X(X -1" a) = 

f ( x )  -1 �9 a '  is a local isomorphism between a neighbourhood of the identity in G 

and a neighbourhood of the identity in H ( F ) .  

Proof." Clearly X is a homeomorph i sm  between U1 = U -1 .a and U2 = (U')  -1 .a ' .  

We must  show tha t  X(x .y )  = X(x)" X(Y) (for x , y  �9 U1 such tha t  also x . y  �9 U1). 

We require: 

CLAIM: Letx ,  y , z  �9 U besuch t h a t x . z - l . y  = a. Then f (a)  -- f ( x ) . f ( z ) - l . f ( y ) .  

Proof of claim: Let bl = x -1 �9 c and Cl = z .  bl. By the choice of U and L e m m a  

3.1 (iii), bl �9 V and cl �9 W. Moreover c l e a r l y y . b  = Cl. Thus  we have, by 

L e m m a  4.8 (ii), 

(i) f ( y ) . g (b )  = h(Cl), 

(ii) f ( z ) .  g(bl) = h(cl), and 

(iii) f ( x ) .  g(bl) = h(c). 

Thus  f ( x )  . f ( z )  - 1 . f ( y ) . g ( b )  = f ( x )  . g(bl) = h(c) = f (a)  . g(b). Thus  the 

claim is established. 

Now let x �9 U, y �9 U, and suppose t ha t  x -1 �9 a .  y -1  _ z - l ,  wi th  z �9 U. So 

(x - 1 .  a ) .  ( y - 1 .  a) = z - l . a .  Then  X(z - 1 .  a) = f ( z )  - 1 .  f (a)  = (by the claim) 

f ( x )  -1 .  f ( a ) .  f ( y ) - l ,  f (a)  = X(x - 1 .  a).  c(y -1 .  a). This proves the Corollary. 

Theo rem A is proved. I 

We now a im towards the proof  of Theorem B. We need the following informa- 

t ion on the s t ruc ture  of commuta t ive  real algebraic groups. We imagine this to 
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be well-known, but give a brief proof nevertheless. 

LEMMA 4.10: Let G be the connected component of the reM points of a con- 

nected commutative algebraic group defined over R. Then G = G1 • G2 • G3, 

where G1 is rationally isomorphic to a product of copies of (R, +),  G2 is ratio- 

nally isomorphic to a product of copies of (R>o, .), and G3 is dosed and compact. 

(So G1 and G2 are semialgebraic, but G3 need not be.) 

Proof: G is on the one hand a group definable in R (in fact a Nash group). Let 

dim(G) = n. On the other hand G is also a connected commutative Lie group of 

the same dimension n. Thus 

(*) G is as a Lie group isomorphic to R m x $k 

where R is (R, +) and T is the 1-dimensional torus (or circle group). (See for 

example IS-W]). Clearly n = m + k. Let H be a connected commutative complex 

algebraic group, defined over R, such that G = H(R) ~ By Chevalley's theorem 

there is a connected affine algebraic normal subgroup HI of H which is defined 

over R and such that H/HI  is an abelian variety. The Jordan decomposition 

of HI yields HI = H2 x H3 where //2 is a (connected) commutative unipotent 

algebraic group defined over • and Ha is a connected commutative diagonalisable 

group defined over R. (see [Bor] Theorem 4.7.) Clearly Hi(R) = H2(R) • H3(R). 

Now, by [Bor], /-/2 is isomorphic, by a rational map defined over R, to some 

vector group C r. It follows that H2(R) is isomorphic, by the same rational map, 

to R r . 

Now we look at the connected diagonalisable group H3. By [Bor] (Proposition 

8.15) H3 -- //4 �9 Hh, where Ha, H5 are connected algebraic subgroups of H3, 

defined over R, //4 is R-split (namely diagonalisable over R), H5 is anisotropic 

over R (namely there is no nontrivial R-rational map of Ha into C* ), and HaNH5 

is finite. By looking at the R-rational characters of/-/3, it is not difficult to see 

that H3(R) = H4(R). H5 (R) (and of course H4(•) N H5 (R) is finite). Now H4(R) 

is isomorphic by a rat ional map to (R*)8 for some s. Thus 

(i) H4(R) ~ (the connected component of Ha(R) in the real topology) is iso- 

morphic by the same rational map to (R~o) ~. 

By [Bor] (24.6), Hh(R) is compact and connected, and thus 

(ii) Hh(R) is as a Lie group isomorphic to T t for some t. 

Finally (H/H1)(R), the set of real points of the abelian variety H/H1 is a compact 

Lie group which contains H(R)/HI(R)  as a closed subgroup. Thus H(R)/H1 (R) 
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is a compact Lie group. Now K = H2(~) x H4(~) ~ x Hh(~[ ) is connected and 

thus contained in G = H(R) ~ The projection map H ( R ) / K  ~ H(R) /HI(R)  is 

finite to one, and thus H ( R ) / K  is also a compact Lie group. As H ( R ) ~  is a 

closed subgroup of finite index in H ( R ) / K  we obtain 

(iii) G / K  is as a Lie group isomorphic to T ~ for some u. 

Let us put Gt = H2(~) and G2 = Ha(R) ~ So K = G1 x G2 x Hh(•). Note that 

(**) n = dim(G) = dim(G1. G2) + t + u. 

Now K is a divisible subgroup of the commutative group G, and is thus a direct 

summand. Thus (by iii)) G ~ K x ~ as an abstract group. So we have 

(iv) As an abstract group G ~ Gi • G2 x T t+~. 

On the other hand, by (*) at the beginning of the proof 

(v) G = A- B where A, B are closed subgroups, and as Lie groups A is iso- 

morphic to R TM , B is isomorphic to T k (and A n B = (1}). Comparing say 

the number of elements of order 2 in the two expressions in (iv) and (v) for 

G we see that k = t + u. Now clearly (G1 �9 G2) N B = (1) (as the intersec- 

tion is a closed and thus compact subgroup of B, so has torsion elements, 

whereas Gi �9 G2 is torsion-free). Thus the Lie subgroup Gi x G2 x B of G 

has dimension dim(Gi �9 G2) + k which equals dim(G). As G is connected, 

G -- G1 • G2 x B. This completes the proof of the lemma. | 

Proof of Theorem B: Let G be our connected affine Nash group. Let (by Theo- 

rem A) H be the connected component of the real points of an algebraic group 

defined over R, and f a Nash isomorphism between a neighbourhood U1 of the 

identity in G with a neighbourhood U2 of the identity in H. Let G, H be the 

universal covering groups of G, H, respectively, with covering homomorphisms 

Pi: G -~ G and P2: H --* H,  where by Remark 4.5 we can take everything to 

be locally Nash. f lifts to a unique locally Nash isomorphism ]:  G --* H (with 

P2 o ] = f o Pl  o n  a neighbourhood of identity of 2) .  Let D1 = ker(pl) and 

D2 = ker(p2). 

Let Z(G) ~ Z(H)  ~ be the connected components of the centres of G, H re- 

spectively. Easily Z(H)  ~ is the connected component of the real points of a 

commutative algebraic group defined over R, so Lemma 4.10 applies, giving us 

Z(H)  ~ = Hi • H2 • H3, where the Hi are subgroups of Z(H) ~ with Hi  definable 

and isomorphic to a product of copies of R, H2 definable and isomorphic to a 

product of copies of R~o, and H3 closed and compact. In particular Hi  and H2 

are affine Nash groups. Then P2: Z(H)  ~ ~ Z(H) ~ is a covering homomorphism. 
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But H1 x H2 is simply connected, and so we can write Z(H) ~ as H1 • H2 x H3 

with P2: Hi --* Hi an isomorphism for i = 1, 2 and P2:H3 --~ Ha a covering 

homomorphism. So clearly 

(i) D2 N Z(~r) ~ is a discrete subgroup of H3. 

Let G1, G2, G3 be the preimages of H1, -~2, H3 under ].  Then Z(G) ~ = 

G1 • 55 • 53. 
Now f-l(U2 N H1) is a semialgebraic set in G which generates (as remarked at 

the end of [P4]), a definable connected subgroup G1 of G. Moreover pl . ( ] )  -1.p21 

restricted to H1 defines a covering map f l :  H1 --~ G1 (agreeing with f -1  on 

U2 N H1). f l  is locally Nash and G1, H1 are affine Nash groups, so by Lemma 

4.7, ker(fl) is finite, and thus (as H1 is a product of copies of~),  trivial. It follows 

that Pl: G1 ~ G1 is an isomorphism. Similarly Pl: G2 ~ G2 is an isomorphism. 

Thus again 

(ii) D1 n Z(G) ~ is a discrete subgroup of G3. 

Now clearly ] induces a locally Nash covering homomorphism g: G/D1 --* 

(t~I/02)/(](Pl)/D2)), namely g: G --~ g /03 ,  where 93 is ](D1)/O:. 

CLAIM: D3 is finite. 

Proo[ o[ claim: Now D3 is in Z(H), the centre of H, and Z(H) ~ has finite index 

in Z(H). So it suffices to see that D3 ~ Z(H) ~ = D4 is finite. But by (i) and 

(ii) D4 is a discrete subgroup of the compact group H3. Thus D4 is finite. The 

claim is proved. 

Let H4 be a connected algebraic group defined over R such that  H is H4(R) ~ 

Then H4/D3 is a connected algebraic group defined over R, and moreover H/D3 

= (H4/D3)(R) ~ In particular H/D3 is an affine Nash group. By Lemma 4.7 

Ker(g) is finite, and by Fact 4.3, g is Nash (definable). Thus g is a Nash isogeny 

between G and the connected component of the real points of an algebraic group 

defined over R. This completes the proof of Theorem B. | 

One can not do without the finite kernel in Theorem B. For example SL2(R) has 

finite covering groups, which can be equipped with the structure of affine Nash 

groups, but are known to be not even analytically embeddable into algebraic 

groups. 
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5. Loca l  s t ab i l i ty  t h e o r y  a n d  g e o m e t r i c  s t r u c t u r e s  

We will review stability theory and stable group theory in its local form, with out- 

lines of proofs, and we then make some remarks on the interaction of the resulting 

notion of independence with the dimension-theoretic notion of independence in 

the case of geometric structures. We divide the section into two subsections, the 

first giving an exposition of the local stability theory and the second applying 

this to geometric structures. The more experienced stability-theorist can thus 

skip the first section. 

5S. LOCAL STABILITY THEORY The fact tha t  stability theory can be developed 

within a Booleanly closed set of stable formulas (rather than in a globally stable 

theory) was pointed out in [P1]. Here we give a treatment from first principles 

of this theory, due largely to the first author, but incorporating also the point of 

view of [P1]. 

Let T be some complete theory in a language L. We work inside a large 

saturated model M of T. M, N etc. denote small elementary submodels of T. 

x,y, etc. denote tuples of variables. Let ~(x, y) be some L-formula. By an instance 

of ~ we mean a formula of the form ~(x, a), for some a in M. By a ~-formula we 

mean a formula which is equivalent to some Boolean combination of instances of 

~. If A is a subset of M then by a ~-A-formula we mean a formula over A which 

is also a ~-formula. By a complete ~-type over A we mean a maximal consistent 

(with M) set of ~-A-formulas. The set of such complete ~-types over A is denoted 

S~(A). If p(x) E S(A) (namely p(x) is a complete type over A in the variable 

x), then pl~ denotes the set of ~-formulas in p. (So pl~ E S~(A).) Note that if M 

is a model, and p(x) E S~(M), then p is determined by the set of instances of 

and ~ which are in p. If q(x) is a (possibly incomplete) type over B and A is a 

subset of B, then qlA denotes the set of formulas in q which are over A. 

De/~nition 5.1: Let p E S~(M). p is said to be de f inab le  if there is a formula 

~(y) over M such that for all a in M, ~(x, a) E p iff ~ ~(a). If such a formula 

exists then it is unique up to equivalence. If p = ql~ where q(x) e S(M),  we call 

the ~-definition of q. 

Det~nition 5.2: The formula ~(x, y) is said to be s t ab le  if there do not exist a~, 

b~ (in M), for i < w such that  ~ ~(a~,bj) iff i < j (for all i , j  < w). (Note that 

this definition depends on a fixed division of the variables in ~.) The theory T is 

said to be s t ab l e  if every formula ~(w, z) of L is stable. 
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Remark 5.3: 

(i) If 6(x, y) is stable, then so is 6'(y, x) -- 6(x, y). 

(ii) If 6(x, y) is stable, then there is n < w such that there do not exist al, bi 

for i < n such that ~ 6(ai, bj) iffi  < j ( i , j  < n). 

(iii) If 61(x, yl) and 62(x, y2) are stable formulas, and 63(x, yl,y2) is some 

Boolean combination of 6] and 62, then 63(x, (Yl, Y2)) is stable. 

We now fix a stable formula 6(x, y). 

LEMMA 5.4: Let p(x) E S(M).  Then 

(i) p[6 is definable. 

(ii) There are c l , . . . , c k  in M such that the 6-definition of p is equivalent to 

some positive Boolean combination of the 6(ci, y). 

(iii) I rA  is a subset of M and M is [A[+-saturated, then the dements c l , . . . ,  ck 

above can be chosen so that c~ realises p F- (A tA { c l , . . . ,  ci-1}) for each i. 

Proof." We sketch the proof of (ii), from which the proof of (iii) will also be 

apparent. Let c* realise p(x). By 5.3 let n be such that there do not exist hi, 

bi, i < n such that ~ 6(hi, bj) if i < j ,  and similarly for ~6(x, y). We define 

inductively, finite subsets Ai, Bi of M and elements ci in M (for i -- 0, 1, 2 , . . . )  

such that 

(a) Whenever W is a subset of { 0 , . . . , k  - 1} and for some a in M, 

A{6(cj,  a): j E w }  but ~ ~6(c*, a), then some such a is in Ak. 

(b) Whenever W is a subset of { 0 , . . . , k  - 1} and for some b in M, 

A{-,6(cj, b): j e W} but ~ 6(c*, b), then some such b is in Bk. 

(c) For all 6 E U{Ai: i _< k} U U{Bi: i <_ k}, ~ 6(ck, 6) iff # 6(c*, 6). 

The reader is left to check (using our choice of n) that 

(I) If a E M and for some n-element subset W of {0 , . . . ,  2n}, # A{6(cj, a): j 

e W}, then ~ 6(c*, a). 

(II) If a E M and for some n-element subset W of {0 , . . . ,  2n}, # A{-,6(cj, a): j 

e w } ,  then ~ -,6(c*, a). 

It clearly follows from (I) and (II) that for each a E M, 6(x, a) E p(x) iff 

V{A{6(cj, a): j e w} :  w a subset of {0 , . . . ,  2n} and tW[ = n}. 

LEMMA 5.5: Let p(x) be a complete type over A, and M D_ A be a model  Then 

there is some q(x) E S~( M) such that p(x) Uq(x) is consistent and the 6-de~nition 
of  q is over acleq(A). 
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Proof: Here acleq(A) denotes {c e Meq: C E hal(A)}; and note that  acleq(A) is 

contained in M eq. 

First a Lowenheim-Skolem argument allows us to assume that  A = 0, L is 

countable and M is countable and recursively saturated. Now every complete 

5-type over M is clearly determined by its definition (which exists by Lemma 

5.4). Thus S~(M) is countable. In particular X = {q(x) E S~(M): q(x) U p(x) 

is consistent} is countable, and is also a compact Hausdorff space under the 

usual totally disconnected topology. It  is then well-known that  every point in 

X has some Cantor-Bendixon rank, there is a maximal  such CB-rank a ,  and 

moreover the set Xo of points in X with CB-rank a is finite and nonempty. Note 

that  Ant (M)  acts on X (as a group of homeomorphisms),  and thus X0 is fixed 

setwise under Aut(M).  Let q E X0, and let r be the 6-definition of q. If 

f E Aut (M) ,  then f(q) E Xo and f(q) has definition f(r  So e(y) has finitely 

many images (up to equivalence) under Ant(M).  Our saturation assumption on 

M implies that  e(y) is almost over 0, namely over acleq(0). I 

De~nition 5.6: If q(x) E Se(M),  A is a subset of M and the 6-definition of 

q is over acl~q(A), we will say that  q d o e s  n o t  fo rk  o v e r  A, or that  q is a 

n o n f o r k i n g  e x t e n s i o n  of  qlA. (So Lemma 5.5 gives the existence of nonforking 

extensions.) If q(x) E S~(B) and A C B we say that  q d o e s  n o t  fo rk  o v e r  A if 

q has some extension r E S~(M) to a model M, which does not fork over A. 

LEMMA 5.7: Let 6'(y,x) be the formula 6(x,y). Let p(x) E S6(M) and q(y) E 

S~,(M). Let ~(y) be the 6-definition of p, and a(x) the ~'-definition of q. Then 

e p(x) itr (y) �9 

Proof: Let us first remark that  e(y), the 6-definition of p(x),  is by 5.4, a 6'- 

formula over M,  so either e or ~e is in q(y). Similarly either a or -~a is in 

p. 

We may assume that  both  p, q are definable over some subset A of M and 

that  M is [Ai+-saturated. Suppose by way of contradiction that  -,a(x) �9 p, 

but E(y) �9 q. Define hi, b~ in M for i = 0 ,1 ,2 , . . . ,  as follows: a~ realises 

p](m U {b0, . . . ,  b,-1}) and bi realises ql(d U {a0 , . . . ,  a,}). Then we see that  

/~(ai, bj) iff i > j ,  contradicting the stability of 6. This proves the lemma. I 

LEMMA 5,8: Let pl(x) ,  p2(x) �9 S~(M) both be de~nable over A, where A = 

acl~q(A) is contained in M ~q. Suppose plI A = p2I A. Then Pl = P2. 
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Proof'. Let b E M. We must check that (*) ~(x, b) E Pl iff 5(x, b) E P2. Let qo(Y) 
be the complete 5'-type of b over A. By Lemma 5.5, there is q(y) E Se, (M) which 

extends qo(Y) and whose 5'-definition is over A. Let e~(y) be the 5-definition of 

pi(x), for i = 1, 2, and let a(x) be the 51-definition of q. So ~1, e2 and a are all 

over A. By 5.7, 

~l(y) E q iff a(x) E Pl iff a(x) E P2 iff e2(y) E q. 

But 

Thus 

which yields (*). I 

el(Y) E q iff ~ci(b) .  

For the next lemma we use the following notation : AutA(B) is the set of 

permutations of B induced by elementary maps which fix A pointwise. FERe(A) 

denotes the collection of formulas E(xl,  x2) over A which define an equivalence 

relation with finitely many classes, and such that  for each a, E(x, a) is a 5-formula. 

LEMMA 5.9: Let p(x) E Se(A), and M 2 A. Let X = {q(x) E S~(M): q is a 

nonforking extension of p}. Then 

(i) X is finite, 

(ii) Assuming M to be sut~ciently homogeneous, AutA(M) acts transitively on 

X,  

(iii) there is some E(xl,x2) E FEe(A) such that for all ql, q2 E X,  ql = q2 iff 

ql(xl) U q2(x2) t- E(Xl, x2). 

Proo~ Let Y = {qt(acleq(A)): q E X}. 

CLAIM: AutA(aCleq(A)) acts transitively on Y. 

Proof of Claim: Let pl(x) be some complete type over A extending p(x). Let 

q(x) E Y. Then pl(x) U q(x) is consistent: for otherwise pl(x) ~- ~r for 

some r in q. Let )((x) be the (fnite) disjunction of the conjugates of r under 

AutA(acFq(A)). So clearly pl(x) t- -~)l(x). But X(x) is a 5-A-formula, which is 

in q(x) so also in p(x), and this is a contradiction. So we see that pl(x) U q(x) is 

consistent. This clearly proves the claim. 
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The claim, together with Lemma 5.8 proves (ii). For (i) and (iii) we may assume 

M to be sufficiently homogeneous. Fix q0 E X. Let r be the 5-definition of 

q0- Then ~ is over acleq(A), so has only finitely many images (up to equivalence) 

under AutA(M). But if f C AutA(M), then clearly f(r is the 5-definition of 

f(qo) (and clearly f(qo) C X too). By (ii) we conclude that X is finite (and 

moreover X is parameterised by the A-conjugates of r So (i) is proved. 

For (iii): as X is finite and using again 5.8, there is a finite collection (I)(x) of 

5-formulas over acFq(A), such that for ql, q2 E X, ql = q2 iff for each ~a(x) C ~, 

~(x) E ql iff ~(x) E q2. We may assume that (I) is closed under A-automorphisms. 

Let E(xl,  x2) be the formula A{~a(xl) ~ ~a(x2): ~ �9 (I)}. Then E is clearly in 

FE~(A) and satisfies (iii). I 

Definition 5.10: Let 5(x, a) be an instance of 6. We say that 5(x, a) does  no t  

fork over  A, if for some model M containing A U {a}, there is p(x) �9 Sh(M) 

which contains 5(x, a) and does not fork over A. 

LEMMA 5.11: 

(I) The following axe equivalent: 

(i) 5(x, a) does not fork over A, 

(ii) some positive Boolean combination of A-conjugates of 5(x, a) is con- 

sistent and A-definable, 

(iii) any set of acFq ( A )-conjugates of 5(x, a) is consistent. 

(II) Moreover, if  S(x, a) forks over A, then there is an A-indiscernible sequence 

(ai: i < w) with tp(ai/A) = tp(a/A), such that {5(x, ai): i < w} is incon- 

sistent. 

Proof: We first make some constructions and observations. Let A1 = acleq(A), 

and let q(y) = tp(a/A1). Let M be some IAi+-saturated model containing dU{a}. 

By Lemma 5.6 let q*(y) E S~,(M) be a complete 5'-type over M which is definable 

over A1 and is consistent with q(y). Let a(x) be the 51-definition of q*. Let a* 

realise q(y)U q*(y). By Lemma 5.4 (iii), a(x) is equivalent to a positive Boolean 

combination of formulas 5(x, a') where tp(a'/A1) = tp(a*/A1) = q(y). Namely 

(,) a(x) is equivalent to a positive Boolean combination of Al-conjugates 

of 5(x, a), and a(x) is over A1. 

Now we prove (I). 
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(i)--~(ii): Suppose now that b(x, a) does not fork over A. Then there is clearly 

p(x) E S~(M) which does not fork over A and contains b(x, a). Let r be the 

b-definition of p(x). By 5.7, a(x) E p(x) iff r E q*(y). But, as b(x,a) E p, 
we clearly have that ~ r and thus (as tp(a*/A) = q(y) = tp(a/A))  also 

r Thus c(y) E q*(y). So a(x) E p(x), and a(x) is in particular consistent. 

Take a'(x) to be the disjunction of the (finite number of) A-conjugates of a(x). 
Then a~(x) is consistent, and by (.) is also a positive Boolean combination of 

A-conjugates of b(x, a). So (ii) holds. 

(iii)~(i): Assuming (iii) is true, we have in particular that a(x) is consistent. 

So a(x) is a consistent b-formula over A1. Let p(x) E S~(A1) contain a, and 

let (by 5.6) p*(x) E S~(M) be a nonforking extension of p. Let r be the 

b-definition of p*(x). Again by 5.7, we deduce that r E q*(y). In particular 

r Thus also ~ r whereby b(x, a) E p*. Thus (as p* does not fork over 

A), we see that b(x, a) does not fork over A. 

(ii)~(iii): Assuming (ii), let a(x) be a consistent formula over A which is a 

positive Boolean combination of A-conjugates of b(x, a). Let p(x) E S~(A) con- 

tain a(x), and let p*(x) E S~(M) be a nonforking extension of p, where M is 

sufficiently saturated and homogeneous. As a(x) E p* it is clear that some A- 

conjugate of b(x, a), say b(x, a') is in p*. Let f be an A-automorphism of M such 

that f(a') = a. Then f(p*) = p** is also a nonforking extension of p, and more- 

over contains b(x, a). Now the b-definition of p* is over acleq(A), so in particular 

whenever a" E M with tp(a"/acleq(A)) = tp(a/acleq(A)), then b(x,a")  E p*. 

Thus any set of conjugates of b(x, a) under A-automorphisms of M is consistent. 

As M is saturated, we can also conclude (iii). 

Proo[o[ (II): We slightly modify the construction at the beginning of this proof. 

M is again a very saturated model of T containing A. q(y) = tp(a/A1) and 

q*(y) E S~(M) and a* realising q(y) U q*(y) are as before. Let N < M be 

a "small" model containing A. Let ql(Y) = tp(a*/N). Then q* is definable 

over A1, so clearly every formula in q* does not fork over N. Then, using part 

(I) we see that ql(Y) U q*(y) is finitely satisfiable in N (namely every formula in 

ql(Y) U q* (y) is satisfied by some element in N). Then easily ql (Y)Uq* (y) extends 

to a complete type r(y) E S(M) which is finitely satisfiable in N. Let a(x) as 
before be the b'-definition of q* (= the b'-definition of r(y)). By Lemma 5.4 (iii), 

c~(x) is equivalent to some positive Boolean combination of b(x, a l ) , . . . ,  b(x, ak) 
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where a~ realises r[(N U { h i , . . . ,  a~-l}). Let (a~: i < w) extend a l , . . . ,  ak such 

that  for all i < w, ai realises r l (g  U {e l , . . . ,  hi- l}) .  It is easy to see (using the 

finite satisfiability of r in N) that 

(**) (hi: i < w) is N-indiscernible. 

Now assuming that 5(x, a) forks over A, it follows (as in the proof of (iii)--~(i) 

above) that a(x) is inconsistent. Thus {5(x, a l ) , . . . ,  5(x, ak)} is inconsistent. By 

(**) this proves (II). | 

Remark 5.12: All the above theory works in the following more general situation. 

Let T again be a complete theory in language L, and M a big saturated model 

(universal domain) of T. Let (I)(x), 9(y)  be partial types over 0. Let 5(x, y) be 

an L-formula. We say (5(x, y), ~(x), 9(y)) is s t ab le  if there do not exist al, b~ 

(in M) for i < w, such that ~ (I)(ai) and ~ 9(b~) for all i, and ~ 5(ar bj) iff 

i < j .  The best way of seeing the generalisation is to now view the variable x as 

ranging over realisations of ~, and the variable y as ranging over realisations of 

9.  An i n s t a n c e  of (5, 6p, 9)  is then a p a r t i a l  t y p e  of the form {5(x, a)} U 69(x) 

where a satisfies ~(y) .  Similarly a (5, r  k~)-formula is a partial type of the 

form {Boolean combination of some 5(x, a~)} t2 r  where the a~ satisfy 9(y) .  

A (5, ~, 9)-formula is said to be over A if its solution set is fixed setwise by A- 

automorphisms. S(6,r (A) is then the set of maximal consistent sets of (5, r  9)-  

formulas which are over A. Work with w-saturated models instead of arbitrary 

models. Then with these substitutions, the above results 5.4-5.11 remain valid. 

| 

The reader should note that the language of forking was also used in earlier 

sections in connection with strongly minimal structures D. In fact if D is strongly 

minimal, then D is stable, and for any A C B in D and a E D '~, dim(a/A) = 
dim(a/B) iff for all formulas 5(x, y) of the language the complete 5-type of a over 

B does not fork over A. In fact this will be a consequence of Lemma 5.19 below. 

In any case it should be noted that there is no contradiction between the current 

language and that of earlier sections. 

The context of 5.12 yields an elegant theory for definable homogeneous 

spaces, which we will now outline. 

Context: In L there are formulas G(z), S(x), ~(Zl, Z2, Z3) , and ~(z, Xl, X2) such 

that  the theory T says: ";~ defines the graph of a group operation on G(z)" and 
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"~ defines the graph of a transitive group action of G(z) on S(x)' .  We write 

both the group operation and group action as zl �9 z2 and z .x .  We assume all the 

above formulas are without additional parameters. We sometimes identify G(z) 
with its locus G M, and similarly for S(x). 

Definition 5.13: Let 5(x, y) be a L-formula such that ~- 5(x, y) --* S(x). We say 

that ~(x, y) is an e q u i v a r i a n t  f o r m u l a  if for every a in M, and c E G M there is 

5 in M such that  ~ 5(c.x, a) ~ 5(x, b). 

Note that if X is the subset of S defined by 5(x, a), and c E G then c �9 X 

is the set defined by 5(c -1 �9 x, a). 

We now assume that ~(x, y) is a stable, equivariant formula. It follows that 

if ~(x) is a 5-formula (with parameters) then for any c E G, ~(c .  x) is also a 

5-formula. So clearly ifp(x) E S~(M) and c E G M, then c.p = {~(c -1 .x) :  ~(x) E 

p} E S~(M). Namely G M acts on S~(M). 

Definition 5.14: 
(i) Let ~(x) be a 5-formula. We say that ~ is generic if finitely many G- 

translates of ~(x) cover S, namely there are c l , . . . , c n  in G such that 

S(X)~(Cl l ' x )  V ' ' 'V~f l (Cn  l ' x ) .  

(ii) For any set A, and p(x) E S~(A) we say that p(x) is generic if every formula 

in p(x) is generic. 

LEMMA 5.15: Let ~(x) be a 5-/ormula. Then either ~(x) or -~ (x )  is generic. 

Proof'. Let Mo be the following "relativised reduct" of M. Mo has predicates 

G(z), S(x), A(x, z), where A(x,z) holds in Mo iff ~(z -1 �9 x) holds in M. Let 

T O = Th(Mo). It is clear that A(x, z) is stable for To. It is easy to check that  

(I) for any g E G, the map which takes a E G to g.  a and b E S to g.b is an 

automorphism of Mo. 

Thus (by transitivity of the original action of G on S) 

(II) In To, S(x) determines a unique 1-type. 

Let 1 denote the identity element of G. Working in To we have that either A(x, 1) 

or ~A(x, 1) does not fork over 0. In the first case, by Lemma 5.11, some positive 

Boolean combination of 0-conjugates of A(x, 1) is consistent and 0-definable. But 

any conjugate of A(x, 1) under the action of Aut(Mo) has the form A(x,g) for 

some g E G, so using (II) we see that ~ S(x) -~ )~(x, gl) V . . .  V ~(x, gm) for some 

g l , . . . ,  gm in G, and thus ~(x) is generic in M. Similarly, if -~A(x, 1) does not 

fork over 0, then -~ (x )  is generic in M. This proves the lemma. I 
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LEMMA 5.16: Let M be a model. Then 

(i) The set X of generic p(x) E S~(M) is finite and nonempty. 

(ii) G M acts transitively on X .  

(iii) There is a G-invariant E E FE~(O) such that for Pl,p2 E X ,  Pl = P2 iff 

pI(Xl) I-J p2(X2) ~ E(~Cl,X2)- 

Proof." Essentially we pass to a suitable reduct of T eq, and then directly apply 

Lemma 5.9. Let E(yl ,  Y2) be the formula Vx(6(x, Yl) +-+ 6(x, Y2)). 

Let A denote the sort SE in T eq (see section 1.3). Let r w) be the L eq- 

formula 3y(6(x, y) A w = y /E) .  (So essentially the interpretation of A is the set 

of (sets defined by) instances of 5, and c is membership.) 

Let 1~1 be the relativised reduct of M, with predicates S(x), A(w) and 

~(x, w). Let T1 = Th(M1). Again clearly ~(x, w) is stable for T1, and 

(I) for any g E G, the permutation b --* g.b of S extends to a (unique) auto- 

morphism of M1. 

Thus again 

(II) in T1, the formula S(x) determines a complete type over 0. 

Fix a model M of T, which we may assume to be reasonably homogeneous, and 

let M1 be the corresponding reduct of M to a model of T1. 

We can clearly identify S~(M1) and S~(M) (although not S~(A) and S~(A) 

for arbitrary sets A). By (II) there is a unique p(x) E S~(O) (in T1). We apply 

5.9 (in T1) to obtain the finite nonempty set X1 = {q E S~(M1): q does not 

fork over 0}, and E1 E FE~(O) such that the types in X1 are distinguished by 

the El-classes they contain. Also Aut(M1) acts transitively on X1. As E1 is 

0-definable, by (I) E1 is G-invariant. In particular (by transitivity of the action 

of G), 

(III) G M acts transitively on the El-classes, and thus on X1. 

All that remains to be seen is that X1 is precisely the set of generic complete 

5-types over M. This is given by 

CLAIM: Let ~(x) be a/~-formula over M (and thus equivalent to a ~-formula 

over M1). Then ~(x) is generic iff ~(x) E q for some q E X. 

Proof of Claim: If ~(x) is generic, clearly any q E S~(M) contains some G M- 

translate g.~(x) of ~(x). Taking q E X1, then g- l .~ (x )  E g- l .q  E X1. Con- 

versely, suppose ~(x) E q, with q E X1. By (III), some finite union of G-translates 

of ~(x), say r is contained in every type in X1. Thus -~r is contained in 
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no type in X1. By the first part of the proof of the claim, -~r is not generic. 

By 5.15, gz(x) is generic. So clearly qo(x) is also generic. The claim is proved, 

and so also the lemma. | 

Remark 5.1 7: 

(i) Let ~(x) be a/f-formula. Then ~ is generic iff for all g E G, ~(g.x) does 

not fork over 0. 

(ii) Let p(x) E S~(M), where M is sufficiently saturated. Then p is generic iff 

for all g E G M , g.p does not fork over 0. 

Proo[: (i) We make use of the proofs of 5.16 and 5.15. Suppose ~(x) is generic. 

Then for each g �9 G, ~(g �9 x) is generic, so by the proof of 5.16, is contained in 

some q �9 S~(M) which does not fork over 0 in the sense of the theory T1. This 

means that the 5-definition of q is over acleq(0) in the sense of T1, so also in the 

sense of T. Thus q does not fork over 0 in T, so ~(g.  x) does not fork over 0. 

Conversely, suppose ~(x) is not generic. Let 1~ ,  To -- T h ( l ~ )  and A(x, z) 

be as in the proof of 5.15. (A(z, x) is equivalent to ~(z -1.  x).) Then A(x, 1) forks 

over 0 in To. By 5.11 (II) (for To) there is an indiscernible sequence (g~: i < 

w) such that {A(x,g~): i < a;} is inconsistent. We may extend this sequence 

to an indiscernible sequence (gi: i < a) where g > 2 ITI. Let M be a model 

of T containing all the gi. Note A(x, gi) is precisely ~(g~-I . x). If by way of 

contradiction all the ~(g~-l. x) did not fork over 0, then we could choose, for each 

i < a, some p~ E S~(M) containing ~(g~-i. x) such that p~ does not fork over 0. 

But by Lemma 5.8, each pi is determined by pi[acleq(0), so among the pi there 

are at most 2 IT1 different types. But indiscernibility of the gl (in To) implies 

that  every k-subset of {~(g~-i. x): i < a} is inconsistent, giving a different types 

among the pi. This contradiction shows that  some ~(g~-I. x) forks over 0 in T, 

completing the proof. (ii) follows from (i). | 

Remark 5.18: Again the homogeneous space theory works in the more general 

context where G(z) and S(x) are partial types over 0 instead of formulas. We 

still assume that the group operation on G and the transitive action of G on S 

are given by formulas over 0 (restricted to G • G x G and G • S x S). This 

set-up is called an oc-definable h o m o g e n e o u s  space (over 0). Then 5(x, y) 

is called equ ivar ian t ,  if for any a, and g �9 G, there is b such that  the partial 

type 5(g. x, a) A S(x) is equivalent to 5(x, b)/~ S(x) (or in terms of solution sets 

~(g. x, a) M A S ~ =/f(x,  b) ~ A S~). (We could also restrict the variable y to some 
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partial type ff~ as in 5.12, but in the applications this is not needed). A complete 

5, S-type over A is a type of the form p(x) A S(x)  where p(x) E S~(A), and the 

set of such types is denoted S~,s(A). If ~(x) is a ~-formula then ~ is said to be 

gener ic  if finitely many G-translates of ~(x)MMS M cover S M, and q(x) E S~,s(A) 

is gener ic  if every 5-formula in q is generic. Lemma 5.16 is then valid in this 

context: If M is reasonably saturated then the set X of generic q E S6,s(M) is 

finite and nonempty, and G M acts transitively on X. The analogue of 5.17 (ii) 

is also true: if M is sufficiently saturated and q(x) E S~,s(M) then q is generic 

iff for all g E G M, g. q does not fork over 0. This observation will be used below. 

I 

The reader should note that  in this paper the word generic has been used 

in two different contexts: geometric structures, and stability theory for homoge- 

neous spaces. We shall see below that in geometric structures satisfying (E) the 

notions essentially coincide. 

5 G .  GEOMETRIC STRUCTURES AND STABILITY O u r  aim now is to study the 

interaction of the local stability theory developed above with geometric struc- 

tures. 

LEMMA 5.19: Let M be a (sufficiently saturated) geometric structure. Let p E 

Sn(A),  with dim(p) = m. Let 6(x,y)  be stable. Let B D A. 

(i) There is an extension q 6 Sn(B)  of p with dim(q) = m, and such that qI ~ 

does not fork over A. 

(ii) I f  moreover F has property (E), then for every extension q E Sn(B)  of p 

with dim(q) = m, q[$ does not fork over A. 

Proof: If (i) fails then by compactness there are formulas 8(x) E p, r  b) over 

B and X(x,b) a 6-B-formula, such that dim(q) = m, r  -* O(z )& X(z,b),  

dim(q(z) & -~r < m, and )C(z,b) forks over A. But then, by 5.11, some 

finite set of A-conjugates of X(x, b) is inconsistent, whereby clearly O(x) is the 

union of finitely many conjugates of O(x) & -~r b), contradicting Lemma 2.3 

(iii). 

(ii) Let q E S~(B)  be an extension o fp  with dim(q) = m. Suppose by way 

of contradiction that  q[d forks over A. Without loss of generality B is a model 

M0. Let MI be an [M01+-saturated elementary extension of M0. By part (i), let 

r(z)  E S~(M1) be an extension of q(x) such that  dim(r) = m and rl5 does not 

fork over M0. So the 5-definition of r is over M0, and is also the 5-definition of q. 
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Write this 5-definition as r  with c in M0. As q[5 forks over A, r  is not 

over acleq(A). By Lemma 5.4 (iii) there are a l , . . . ,  ak in M1 such that ai realises 

ri(Mo U {al , . . .  ,a~-l}) and r  is over {a l , . . .  ,ak}. Then (as dim(p) : m, 

and tp(aJA) = p) 

(a) dim(ajMoal . . .a i -1)  = dim(aJAal . . .a i_ l )  : dim(aJA) = m for all 

i _< k, whereby, by Remarks 2.2, 

(b) d im(a1. . ,  ak/Mo) = dim(a1 . . .  ak/A). 

Let E be the definable equivalence relation: 

Let C be the E-class o f t ,  and let ca be in CAMo with dim(ca/A,c) = dim(C) = t 

say. As r c) is over { a l , . . . ,  ak}, C is { a l , . . . ,  ak}-definable and thus dim(ca/A 

U {al , . . .  ,ak}) <_ t. On the other hand, by (b) and symmetry (2.2 i) d im(d/A U 

{al , . . . ,  ak}) = dim(ca/A) >_ t. Thus dim(d/A) = t. Let X be a A-definable set 

of dimension t containing c a. Then as C is c-definable and dim(ca/A, r = t, also 

dim(X N C) = t. On the other hand, as r c) is not defined almost over A, 

C has infinitely many A-conjugates. Thus infinitely many distinct E-classes of 

X have dimension t, contradicting property (E). This contradiction proves (ii). 
| 

C O R O L L A R Y  5.20: Let M be a saturated geometric structure satisfying property 

(E). Let G C M k be a group which is ~-definable over 0, with dim(G) = n. 

Identify G with the partial type G(x) defining it. Let 6(x, y) be a L-formula 

which is stable and equivariant for the action of G on itself by left multiplication. 

Then p(x) E S~,G(M) is generic (in the stability-theoretic sense) iff p(x) extends 

to a complete q(x) E S(M) with dim(q) = n (iff dim(p) = n). 

Proof'. Suppose p(x) E S~,G(M) is generic. Let ~o(x) be a 5-formula in p. Then 

finitely many G-translates of ~(x) A G(z) cover G. But clearly dim(~o(x) A G(x)) 

= dim(~o(g �9 x) A G(x)) for any g E G. By Lemma 2.3 (iii) (for partial types) 

and the fact that  dim(G) = n, we conclude that dim(~o(x)A G(x)) = n. Thus 

dim(p) = n, so p(z) extends to some complete q(x) E S(M) with dim(q) = n. 

Conversely, suppose p(x) E S~,a(M) extends to some q(x) e S(M) with 

dim(q) = n. Then dim(q) = dim(q]~) (as G(z) e q(x), G is a partial type over 

0 and dim(G(z)) = n). By 5.19 (ii), q16 does not fork over 0, and thus clearly 

p(x) does not fork over @. But clearly for any g E G M, dim(g, q) = n too, and 
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g.p E S~,c(M). Thus for all g E G M, g .p does not fork over 0. By Lemma 5.17 

(see also Remark 5.18), p(z)  is generic in the stability sense. | 

We now point out how stable formulas arise naturally in geometric struc- 

tures satisfying ($1). 

LEMMA 5.21: Let M be a geometric structure satisfying (S1). Let ~(z ,y ) ,  

r z) be formulas such that for all a, b in M,  we have: dim(~o(z,a)) < n 

and dim(r _< n. Let ~(y,z)  be the formula such that for all a', b', 6 (a ' ,g)  

iff dim(~o(x,a') & r  = n. Then ~ is stable. 

Proof'. We assume M to be saturated. Ramsey's theorem states that if X is an 

infinite set, and the collection of unordered k-element subsets of X is partitioned 

into 2 sets Y1 and Y2, then there is i = 1 or 2 and an infinite subset Xo of X such 

that  every k-element subset of Xo is contained in Y~. If by way of contradiction 

is not stable then a standard model-theoretic argument using Ramsey's theorem 

and compactness enables us to find an indiscernible sequence ((a{,bi): i E Z) 

such that ~(ai,bj) iff i _< j .  

CASE (i): dim(qo(z, al)  & ~(z, a2) & ~b(z, b3)) = n. Then 

dim(~(Z, al)  & ~(z,  ai) &r = n for all i > 1, 

whereas 

dim(qo(x, al) & r b/+l) ~ (~(X, aj) ~ ~b(X, bj+l) ) < n for all 1 < i + 1 < j. 

This contradicts the fact that dim(~(z, al)) -- n and the property ($1). 

CASE (ii): Otherwise. Then dim(~(z,a~) & ~(x, aj) & r b3)) < n for all i < 

j < 3. As dim(r b3)) = dim(~(z,a~) & r b3)) = n for all i < 3 we again 

contradict ($1). | 

LEMMA 5.22: Let M be a saturated geometric structure. The following are 

equivalent: 

(i) M has property (S1), 

(ii) (The Independence Theorem over a model.) Let M0 be a small elementary 

submodel of M.  Let a, b be tuples from M such that a is independent 

from b over Mo (in the dimension-theoretic sense). Let cl, c2 be tuples 

from M such that tp(Cl/Mo) = tp(e2/Mo) = r, •1 is independent from a 
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over Mo, and e2 is independent [romb over Mo. Then there is e in M such 

that tp(e/Mo, a) = tp(ex/Mo, a), tp(c/Mo, b) = tp(e2/Mo, b) and {a, b, c} is 

Mo-independent. 

Proo~ (ii)--+(i). Assume M satisfies (ii). Suppose by way of contradiction that 

for some formulas 8(x) and ~(x,y)  (maybe with parameters), there are bl for 

i < w such that 

dim(8(x)) = dim(0(x) & qo(x, bl)) = n for all i, (*) 
but dim(qo(x, b i ) & q o ( z ,  bj))  < n for i • j .  

It is then easy to obtain some model Mo containing the parameters from ~ and 

qo, and b 1, b 2 such that tp(bl/Mo) = tp(b2/Mo), b 1 is independent from b 2 over 

Mo, dim(8(z) & ~o(x, hi)) = n for i = 1, 2, and dim(qo(x, b 1) & ~(x, b2)) < n. 

Indeed, choose Mo containing the parameters from O and ~0. By Ramsey's 

Theorem and definability of dimension, without loss of generality (hi: i < w) 

is an indiscernible sequence over Mo. If bo is independent from bl over Mo we 

are finished. Otherwise, we can again by Ramsey, find a model M1 containing 

MoUbo, and an indiscernible sequence (b'l, b '2, . . . )  over M1 with tp(b'JMoUbo) = 

tp(bi/Mo u bo) = p for all i, and with (*) holding for the b'i in place of the bi. If 

b'l is independent from b'2 over M1, we are again finished. Otherwise continue 

to find M2 and (b"2, bl13,...) as before. As dimension is finite, this process must 

eventually stop. 

Now let el be a generic point of 8(z)&qo(x, b 1) over MoUb 1. Thus el is inde- 

pendent from b 1 over Mo. Let e2 be such that tp(e2, b2/Mo) = tp(el, bl/Mo). Let 

e be as given by the Independence Theorem, namely tp (e/Mo 10b i) = tp(c~/Mo ob i) 

for i = 1, 2, and {b 1, b2,e} is Mo-independent. The existence of the tuple e con- 

tradicts the fact that dim(qo(x, b 1) & ~0(X, b2)) < n. 

(i)--+(ii). Assume M satisfies ($1). Let Mo, a, b, r c2 and r be as in the 

hypotheses of (ii). Let dim(r) = n. It clearly suffices, by compactness, to show 

that for every ~l (x ,a )  �9 tp(c l /Mo,a)  and qo2(x,b) �9 tp(e2/Mo, b) (where ~t ,  ~2 

may have additional parameters from Mo) 

(,) dim(~l(X,a) & qo2(x,b)) = n. 

Let 6(y,z) be a formula (over Mo) defining the set of (a',b') for which (,) holds 

with a' replacing a, and b' replacing b. Let al  be such that tp(al ,c2/Mo) = 
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tp(a, cl /Mo) and al  is independent from {b, e2} over 114o. Then {al,b, c2} is 

Mo-independent, whereby clearly 

(**) 6(al, b) holds. 

By Lemma 5.21, 5 is stable. By Lemma 5.8 above there is a unique complete 5- 

type over MoUb, say q, such that q does not fork over M0 and qiMo = tp~(a/Mo). 

By Lemma 5.19 (ii), tp~(a/Mo U b) = tp~(al/Mo U b) = q. By (**),/~(a,b). So 

(*) holds, completing the proof. I 

6. G r o u p s  in p seudo - f i n i t e  fields 

In this final section we prove Theorem C. We start with a lemma on co-definable 

subgroups of definable groups in geometric structures satisfying (S1). 

LEMMA 6.1: Let M be a saturated geometric structure with property ($1). Let 

G be a group definable in M,  and let H be an oc-definable subgroup of G (namely 

H is a subgroup of G which is the solution set of a partial type over a small set). 

Then H is an intersection of definable subgroups of G. 

Proo~ Let Mo be a small elementary submodel of M over which G and H are 

defined. Let dim(H) = n. Let Ui for i E I be M0-definable subsets of G such that 

dim(U0) = n, Ui C U0 for all i, {Ui: i E I} is closed under finite intersections, 

and H = M{Ui: i E I}. We work in G. For i E I, let 6i(x, y) be the formula (over 

Mo): 

G(x) A G(y) A dim(x �9 Ui A y . Ui) = n. 

(We may at this point add names for the elements of Mo to the language if we 

wish. In any case from now on all sets and models we consider will contain M0.) 

By Lemma 5.20, ~i(x,y) is stable. Moreover ~i(x,y) is also equivariant 

for the action of H on itself by left translation. For if a E G and b E H then 

6i(b.x, a)/X H(x)  is equivalent to ~i(x, b-l.a) A H(x).  

As in Remark 5.18, S6~,H(M) denotes the set of types of the form p(x) A 

H(x), where p(x) e (M). 
For i E I, let Qi = {b E Uo: for every generic (in the stability-theoretic 

sense) p(x) E Se ,H(M),  ~i(x,b) E p(x)}. By Lemma 5.16, or more precisely 

Remark 5.18, for each i E I there are only finitely many generic p(x) E S~,,H(M). 

Each of these does not fork over 3/o (by 5.17 (ii)) and thus the $i-definition of 

each is a formula over Mo. This shows that Qi is an M0-definable set. 
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CLAIM 1 : 

(i) For each i E I,  Qi = {b E U0: for any a E H such that dim(a/b, M0) = n, 

/~i(a, b) holds}. 

(ii) ,.'t = M{Qi: i e I } .  

Proof of Claim 1: (i) Now whenever dim(a/b, Mo) = n, then tp(a/b, Mo) has 

an extension to some complete q(x) E S(M) with dim(q) = n. Thus the right 

hand side in (i) is precisely {b E Uo: 5i(x, b) E q(x) for all q(x) E S(M) with 

dim(q) = n}. By Corollary 5.20 this set equals Qi. 

(ii) If b E H and a E H then a. U~ M b. Ui contains H, thus has dimension 

n, so tfi(a,b), thus b E Qi. Conversely, let b E Qi for a l l i .  Let a E H be 

such that  dim(a/Mo,b) = n. By (i) d im(a .  U~ N b.  U~) = n for all i, thus 

dim(b -1 �9 a .  Ui M U~) = n for all i. As H = MU~, by compactness b -1 �9 a .  H M H 

is nonempty, which clearly implies b E H. 

As H is a group, and {Ui: i E I} is closed under finite intersections, it is 

clear from Claim 1 (ii) that for any i E I there is i(0) C I such that Qi(o) c Qi 

and Q~(0) "Qi(0) c U0. Thus we may assume that for every i E I,  Q~ �9 Qi c Uo. 

CLAIM 2: For any i E I,  H -  Q{ c Q~. 

Proof of Claim 2: First note that H.Qi c Qi "Qi c_ Uo (as by Claim 1, H C Qi). 

Now let a E H, b E Q~, and let c be a (dimension-theoretic) generic point of H 

over Mo U {a, b}. We have to show (by Claim 1 (i)) that ~i(c, a .  b), namely 

dim(c �9 Ui M a .  b. Ui) = n, or equivalently dim(a -1 �9 c- Ui n b .  U~) = n. But, by 

dimension considerations a -1-  c is a generic point of H over Mo U b, so as b E Q~, 

this follows by Claim 1 (i) again. 

Now for i E I,  let Q'{ = {x E Q~: x .  Qi,x  - 1 . Q i  c Qi}. By Claim 

3 and the fact that H C Qi, Qli contains H and is a subgroup of G. Thus 

H = M{Q'i: i E I}. This completes the proof of Lemma 6.1. | 

Note that if R is a saturated (so non Archimedean) real closed field, then 

Lemma 6.1 fails in R. Take H(x) to be { - a  < x < a: a E Q} for example. 

A slight extension of the proof of 6.1 yields: if M is a (saturated) geometric 

structure with property ($1) and H is an c~-definable group in M then H is the 

intersection of definable groups. This will not be needed here. 

The next proposition is fundamental, and will yield Theorem C. We work 

in a geometric substructure F of D where F has the property ($1). The problem 

is to pass from the algebraic relation between generics of G and H(F) given in 
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2.1 to a virtual isogeny between G and H(F).  We now give a rough description 

of what goes on. Let a E G, a I E H(F)  be as given by 2.1, and let K be the 

group G x H(F).  Suppose the base set of parameters is 0. We will consider 

the set S of pairs (c, c') in K such that  for some (al, a ' l)  realising tp(a, a') and 

independent with (c, c~), (c, c'). (al, a'l) also realises tp(a, a'). If F happened 

to be a strongly minimal set say then (by uniqueness of generic types) S would 

be definable and would basically be the graph of the required isogeny. However 

in the situation here, S is only co-definable (rather than definable), and is not 

necessarily a group. However the Independence Theorem will allow us to show 

that S.S is an cx>definable subgroup of K. An application of 6.1 then yields the 

desired definable virtual isogeny. 

PROPOSITION 6.2: Let F be a geometric substructure o lD,  where D has elimi- 

nation of imaginaries. Assume that F is sufficiently saturated and has property 

($1) (so by Lemma 5.22 satisfies the Independence Theorem). Let G be a group 

definable in F. Then there are: a group H definable in D with parameters in F, 

a definable (in F) subgroup Go of finite index in G; a definable (in F) subgroup 

Ho of finite index in H(F);  and a definable (in F) homomorphism from Go onto 

Ho with finite central kernel. 

Proof." Suppose dim(G) -- n. Let A, H, and a,a~,b,b',c,c ' be as given by Propo- 

sition 2.1. We may easily replace A by a small elementary submodel of F such 

that 2.1 still holds. We still call this submodel A. Note that d im(H(F))  = n. 

We will be working in the definable group K = G x H(F)  (in particular 

inside F). We make no more use of stability-theoretic notation, so the word 

generic is always used in the dimension- theoretic sense. 

Let q = tp(b,b'/A). So dim(q) = n. Let (al,a' l)  realise tp(a ,a ' /c ,c ' ,A)  

with (al, at1) is independent with {a, a', b, b', c, c', A} over A, c, c' (and so also 

over A, as (a, a') and (c, c') are independent over A). Let (bl, b'1) be such that  

tp(al,  a'l, bl, b'1, c, c'/A) = tp(a, a', b, b', c, d /A) .  In particular tp(bl, b'l/A) = q, 

and ( a l , a ' l ) .  (51,5'1) = (c,c'). Let a2 = a l l . a ,  and a'2 = (a'l) -1 .  a'. 

CLAIM 1: (a2, a'2) �9 (b, 5') = (b1,5'1), dim(a2/A) = dim(a2, a'2/A) = n, and 

(a2, a'2) is independent with (b, b') over A. 

Proof of Claim 1: The first statement is immediate, dim(a2/A) = n, because 

a2 = a11.a and al and a are independent generic points of G over A. Now 

dim(a2, aS, al, at, a, a', bl, b~, b, b'/A) = 3n, dim(a2, a S, al, a~, a, a'/A) = 2n and 



258 E. HRUSHOVSKI AND A. PILLAY Isr. J. Math. 

dim(a2,  a' 2, bl, b'~, b, b'/A) = 2n. By subaddi t iv i ty  of dimension it follows tha t  

dim(a2,  a~2/A) = n, and tha t  (a2, aS) is independent  with (b, b') over A. 

Let  us define 

St(q) = {x �9 K:  for some y realising q, with x independent  f rom y over A, 

x.y  realises q}. 

CLAIM 2: St(q) is c~-definable over A, namely  defined by a par t ia l  type  over 

A. Moreover St(q) = St(q) -1 and dim(St(q))  = n. 

Proof  of  Claim 2: For U a definable set in q, with d im(U)  = n, let 

S t (U)  = {x �9 K:  d im(x  �9 U A U) = n } ( =  {x �9 K:  d im(x  - 1 .  U N U) = n}). 

By 2.3 (ii) S t (U)  is A-definable. Then  St(q) = ~{St (U) :  U in q}. For example ,  if 

x is in the right hand  side, then by compactness  dim(q A x -1 �9 q) = n, so choose 

y sat isfying q & x -1 �9 q, with y independent  f rom x. Then  x �9 y satisfies q. 

Clearly, if x is independent  with y over A, y realises q and x �9 y realises q, 

then  also x is independent  wi th  x �9 y over A, whereby x -1 C St(q). 

By Cla im 1, (a2, aS) �9 St(q). As d i m ( a 2 , a S / A  ) = n, dim(St(q))  >_ n. On 

the other  hand  if x �9 St(q) and y is independent  f rom x, and bo th  y and x - y 

realise q, then d i m ( x / A )  = d im(x /y ,  A) < d i m ( x ,  y /y ,  A) ~ d im(x . y /A )  = n. 

Thus  dim(St(q))  = n. 

CLAIM 3: 

(i) For any x l , x 2  �9 St(q) wi th  xl  independent  f rom x2 over A, x l  "x2 �9 St(q). 

(ii) Stab(q)  =def St(q) .  S t (q) (=  {x .y,  x, y �9 St(q)}) is an c~-definable (over A) 

subgroup of K ,  of dimension n. If  x �9 Stab(q)  is generic (d im(x /A)  = n) 

then  x �9 St(q). 

(iii) Stab(q)  is "connected",  namely  contains no oc-definable subgroup  of finite 

index. 

P r o o / o f  Claim 3: (i). Let  x l ,  x2 be A-independent  realisat ions of St(q). Then  

x~ 1 �9 St(q). Let  Y2 realise q independent ly  with x2 over A such tha t  x21 - y 

realises q and let r2 = tp(y2/A,  x2). Let  Yl realise q independent ly  with x l  over 

A such tha t  x l  "Yl realises q. Let r l  = t p ( y l /A ,  x l ) .  By the Independence  

Theo rem 5.22 there is y realising r l  U r2 such tha t  {xl ,  x2, y} is A-independent .  

Then  it is clear tha t  x~ -1 - y is independent  with {xl,  x2} over A (as it realises q) 

and thus, as ( x l . x 2 ) .  (x~ 1. y) = Xl . y  realises q, x l  .x2 �9 St(q). 
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(ii) As St(q) is closed under inverses, so is Stab(q). Clearly Stab(q) is ec- 

definable over A, since Stab(q) = VI{St(U). St(U):  U in q}. To show Stab(q) is a 

subgroup it is sufficient to show tha t  if 

a,b ,c  C St(q) then a .  b . c  E Stab(q). 

So let a, b, c C St(q). Let bl be generic in St(q) over {a, b, c, A), namely  bl E St(q) 

and d im(b l /A ,  a, b, c) = n. By (i) 

a . b l  e St(q) and b~ -1.  b e St(q). 

Moreover 

dim(b~ -1. b/A,  a, b, c) = d im(b l /A ,  a, b, c) = n > dim(b11,  b/A).  

Thus b~ -1 - b is independent  with c over A, so by (i) again (b l  1 �9 b) �9 e E St(q). 

Thus a.  b . c  = (a .  b l ) .  (b71- b -c )  E Stab(q). 

Finally we show dim(Stab(q))  = n. Clearly dim(Stab(q))  > n. Let e = 

a .  b C Stab(q) with a, b C St(q). Let c C St(q) with dim(c /A ,  a, b) = n. Then 

again b. c E St(q) and is independent with a over A. Thus a .  b.  e C St(q), and 

hence dim(a  �9 b. c /A,  c) <_ n. But d im(e /A)  = d im(e /A ,  c) = d im(a  �9 b/A,  c) = 

d im(a ,  b. c /A,  c). Thus d im(e /A)  <_ n. Thus dim(Stab(q))  = n. 

The last par t  of (ii) is proved in a similar way: if a, b E St(q) and dim(a .b /A)  

= n, choose c generic in St(q) over A, a, b. Then  a.b = (a .c) . (c- l .b) ,  d im(a .c /A)  = 

dim(c -1 �9 b/A)  = n, and as d im(a  �9 b/A)  = n, this forces a .  c to be independent  

with c -1 �9 b over A. As bo th  are in St(q), so is their product ,  by (i) again. 

(iii) Suppose by way of contradict ion tha t  C is an ec-definable subgroup 

of Stab(q) of finite index in Stab(q). Clearly (as A is a model) C is A-definable, 

and dim(C)  = n. Let c E C be generic over A. By (ii) e C St(q). So let a 

realise q independent ly  with c over A such tha t  c .  a realises q. Clearly a is 

independent  with e .  a over A. Let d C Stab(q) \ C be generic in Stab(q) over 

A such tha t  d is independent  with a over A and d .  a realises q. Again d-  a and 

a are independent  over A. By the Independence Theorem there is e such tha t  

t p ( a , e / A )  = t p ( a , d ,  a /A )  and tp (e .  a , e / A )  = tp (c .  a , a / A ) .  So a and e are in 

different cosets modulo  C, whereas e �9 a and e are in the same coset modulo  C, 

contradict ing the fact tha t  a and c .  a are in the same coset modulo C. 

At this point it is clear tha t  Stab(q) induces an "isogeny" between a "large" 

~-def inab le  subgroup of G and a "large" co-definable subgroup of H ( F ) .  To be 
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more precise: first the projection of Stab(q) on G, say G ~ is co-definable and of 

dimension n (as it contains a2). Similarly the projection H(F) ~ of Stab(q) on 

H(F) is c~-definable of dimension n. Moreover K0 = {x E GO: (x, 0) E Stab(q)} 

is finite, as is g l  = {x C H(F)~ (0, x) C Stab(q)} (as dim(Stab(q)) = n). As 

Stab(q) is connected, both Ko x {0} and {0} x K1 are in the center of Stab(q), 

and thus Ko is central in G O and K1 is central in H(F) ~ So Stab(q) is the graph 

of an isomorphism between G~ and H(F)~ We want to replace G O and 

H(F) ~ by definable supergroups. This can be done using Lemma 6.1. 

By 6.1 there is a definable subgroup Q of G x H(F),  such that Stab(q) C Q, 

d i m ( Q ) -  n, {x: (x,0) e Q} = K0 and {x: (0, x) e Q} = K1. Let Go be the 

projection of Q on the first coordinate, and Ho the projection of Q on the second 

coordinate. Clearly Go is definable with dim(Go) = n, whereby as (E) holds, Go 

has finite index in G. Similarly H0 has finite index in H(F). By choice of Q, K0 

is in the center of Go, K1 is in the center of Ho, and Q defines an isomorphism 

between Go/Ko and Ho/K1. To complete the proof of Proposition 6.2 we need 

to replace Ho/K1 by a definable group of finite index in the F-rational points 

of some group definable in D over F. First let H1 be the centraliser of K1 in 

H. So H~ is a group living in D and definable (in D) over F. Moreover K1 is 

in the centre of H1 and Hi(F) = H(F). By elimination of imaginaries in D, 

H1/K1 is (in D) F-definably isomorphic by some map f to some group H2 in 

D. Clearly dim(H2(F)) = n. On the other hand f embeds Ho/K1 in H2(F), 
and dim(f(Ho/gl)) = n. Thus by ($1) f(Ho/gl) has finite index in H2(F). So 

altogether we now have in F a definable isomorphism of Go/Ko with a subgroup 

of finite index in H2(F), completing the proof of Proposition 6.2. II 

Proof of Theorem C: Let F be a pseudo-finite field, which we may assume to be 

saturated. Let D be an algebraically closed field containing F with D the field- 

theoretic algebraic closure of F. By 2.11 and 2.18, F is a geometric substructure 

of D and F has property ($1). Let G be a group definable in F. Let H be 

the (connected) group given by Proposition 6.2: namely H is definable in D with 

parameters in F, and there is a (definable in F) subgroup Go of finite index in G, 

and a subgroup Ho of finite index in H(F) and a definable (in F) homomorphism 

g from Go onto Ho with finite central kernel. As in the proof of 3.1 ~ (using 1.8.2 

and its proof in [B1] or [Po2]) there is an F-definable isomorphism f between H 

and an algebraic group H1 defined over F. Composing g with f yields Theorem 

C. | 
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